Learning from Answer Sets via Single-Shot Disjunctive ASP Encoding:
Technical Appendix

Roberto Borelli"- 2, Agostino Dovier

1

"University of Udine, Dept of Mathematics, Computer Science, and Physics
2University of Padua, Dept of Mathematics
roberto.borelli @ phd.unipd.it, agostino.dovier @uniud.it

This Technical Appendix is organized as follows. Ap-
pendix A illustrates the single-shot encoding on a small toy
example. Appendix B presents the proofs omitted from Sec-
tion 4. In particular, we provide detailed proofs of the cor-
rectness and completeness of the proposed approach. Fi-
nally, Appendix C contains the proofs omitted from Sec-
tion 5, which concern the grounding process.

A Running Example

In this section, we provide a complete encoding of a small
task. We begin by introducing the task along with its prop-
erties, followed by a presentation of both the cautious and
brave encodings. Finally, we conclude with a discussion of
the full encoding.

Task definition
LetT, = (B,S,ET, E~) be the I LPy 45 task such that:
* B:={p :- not g.}

e S:={hy g. hy g
« BT = {{p.}. {a 1)}
* E7={{e} . {p- 1)}
There are 4 possible subsets of the hypothesis space. For
each subset H, we give the set of answer sets of BU H.
1. AS(BUD) ={1:{p}}
2. AS(BU{m})={1:{q}}
3. AS(BU{ha}) = {1: {p}, 2: {a}}
4. AS(BU{hy,h2}) ={1:{q}}
The hypotheses H = {hy} and H = {hy, ho} are not in-
ductive solutions, as the only answer set of B U H extends
the negative example. Moreover, H = {hs} is also not an
inductive solution: while the answer set containing only the
atom p does not extend the negative example, the answer set
containing only the atom g does, contradicting the definition
of an inductive solution. Thus, we conclude that H = 0 is
the only inductive solution of 7.

:— not p.}

Cautious encoding

We now present the program P, (T) for the task T, explic-
itly illustrating the intermediate steps leading to its construc-
tion. The program BUS is tight, so the formula ¢ (P'(T%))
coincides with the completion formula ¢3(P'(T)):

Gas(P'(T2)) = (p > =q) A (g <> ((mp A K(2)) V h(1))).
The set of free variables of ¢(1¢) is Vp/(1,) = Vp(r,) U
ng(:re) ={p,q} U{h(1),n(2)}.

In the task 7., the only negative example is
{{a.},{p-.}), hence:
¢neg(E7) = (—|q \/p)

The formula ¢ (T.), obtained by transforming into NNF
the formula ¢} (P'(T.)) — ¢neg(E), is:

((((pAg)V (=g A=p)) V ((g A (=h(1) A PV
((h(1) v (R(2) A =p)) A =q))) V (=g V p))
To better visualize the structure of ¥ (T.) we show the

syntax tree. Each internal node is annotated with a unique
index:

(=h(2) v

ww Vm

A v(10)
(5) /11)
—h(1 ﬁh

The final formula from Stage 1 is:
¢(Te) == 3h(1) 3n(2) Vg Yp P(Te).

We now proceed with the encoding of ¢(7) into the dis-
junctive ASP program P, (T.):

%$% Existential variables
(1) | nh(l). h(2) | nh(2).

%$% Universal variables

p | np. g | ng.

P - wW.np - W.d - W. ng :— W.
%% Formuala encoding

w :— formulay.

formulag :— formulaj.

formulag :— formulajs.

formula; :— formulas.

formula; :— formulas.

formulas :— formulas.

formulas :— formulay.

formulas :—- p,q.
formulays :- ng,np.
formulas :— formulag.
formulas :— formulag.
formulag :—- g, formular.
formulay :— nh(l),formulasg.
formulag :— nh(2).
formulag :—- p.

formulag :- formulajg,ng.
formulajg :— h(l).
formula;g :— formulaj;.
formula;; :— h(2),np.
formulajs :— naqg.
formulajs :— p.

o\

% Saturation predicate

w :— not w.

To briefly explain the program expansion(v(T.)), consider
that the atom formulag represents the root of the syntax
tree of ¥ (T,). Since (1) is a disjunction, the program in-
cludes the rules

formulag :— formula;. formulag :-

The atom formula;s represents the disjunction —¢q V p, so
it is encoded as:

formulajs formulajs :— p.

:— nag.

The only answer set of the program P, (T¢) is:
p np g ng nh(l) nh(2) w formulag
formula; formula, formulas formulag
formulas formulag formula; formulag
formula;,
This correctly indicates that every answer set of B U () does
not extend the negative example, satisfying the cautious
entailment requirement.

Brave encoding
After presenting the program P, (T.) in the last paragraph,
we now see the program P} (T).

%% Background knowledge B = {p :- not g}
inAs (p,M) :— not inAs(q, M),
interpretation (M).

%% Hypothesis S:{hl: g, h2: g :- not p}

inAs(q,M) :- interpretation(M),h(1).
inAs(q,M) :- not inAs(p,M),
interpretation (M),h(2).

%% Positive example ({p.}, {g.})
interpretation (1).
cov(l) :- inAs(p,1),not inAs(q,1).

:— not cov(l).

formulajs.

The program P;f (T.) is not self-contained since atoms
h (1) and h(2) do not occur in any rule head. We

thus consider the program P;{;(Te) = Pj(T.) U
{h(1) | nh(1). h(2) | nh(2).}. The program

P (T.) has two answer sets:

Aq: interpretation(l) nh(l) nh(2)

inAs(p,1l) cov(l)
Asy: nh (1)

interpretation (1) h(2)

inAs(p,1l) cov(l)
This correctly indicates that:

* there exists an answer set of B U () which extends the
positive example ;

* there exists an answer set of B U {hz} which extends the
positive example.

In fact, as seen in the presentation of the task 7T+, it holds that

AS(BUD) = {{p}} and AS(B U {hs}) = {{p}.{a}} -

Overall encoding

The only answer set A; of the full program
Pys(T.) = Py (T.) U PL(T.) is:
interpretation(l) nh(l) inAs(p,1)

cov(l) p np g9 ng nh(2) w formulayg
formula; formula, formulas; formulay,
formulas formulag formula; formulag
formulaq,

This indicates that the only inductive solution of 7T
is H = {h;|h(i) € Ay} = 0. This is the intersec-
tion between the set of solutions found by P, (T.) and

Pi (T.) In particular, the set of inductive solutions
is the set {{h;|h(i) € A} | A€AS(P,(T.)} N

{{hiIn(i) € A} | A as(Pf, (1))
to {0} N {0, ha} = {0}

} which evaluates

B Proofs from Section 4

We now provide proofs regarding correctness, completeness
and complexity for the disjunctive encoding Py, (T"). We be-
gin by analyzing properties of the cautious entailment mod-
ule P, (T).

First we formally state that the formula ¢,,.,(E~) ensures
that, for each negative example, at least one inclusion atom
is absent or one exclusion atom is present - i.e., an interpre-
tation satisfying ¢, (£) fails to extend every example in
E~.

Fact B.1 Let A be an interpretation of BU S. Then A sat-
isfies gneg(E ™) if and only if for every e € E~, A does not
extend e.

Proof. We have that A |= ¢,.,(E~) if and only if the for-
mula \/ . ina 20V V cpeaer @ is satisfied for every e =
(enel ecrely € B~ Leta € e™°;if A = —a, then it does
not hold that e C A. Let a € e®; if A = a, then it
does not hold that e¢*¢! N A = (). In either case, we conclude
that A does not extend e. O

Lemma 4.1, follows directly from Theorem 2.2 and the
definition of the program P’(T") and establishes the corre-
spondence between models of ¢ (P'(T")) and the answer
sets of P'(T).

We now show that given a model of the formula
VVp(ry ¥(T') we can compute an hypothesis satisfying cau-
tious requirements. The vice-versa also holds: given such an
hypothesis we are able to find a model of ¥Vp(ry ¥(T').

Lemma B.2 Let T be a ground ILPr ag task, let M C
Vg(T) be an interpretation of VVppy ¢(T), and let H :=

{hi | h(i) € M}. Then the following are equivalent:

1. M I: VVP(T) 'L/)(T) N
2. Forevery A € AS(BU H) and every e~ € E~, it holds
that A does not extend e™.

Proof. We have to prove two implications.
Since M is a model of VVp(r) ¥(T), for every assign-
ment 0 : Vppy — {T'rue, False} to the universal vari-
ables, following the definition of ¢)(T"), it must hold M, o =
2 (P(T)) — dueg(E).

For a specific assignment o, let us consider A’ as the in-
terpretation of ¢)(T) defined as A, := M U A,, where A,
is defined as:

A, = {y ly € Vpr),o(y) = True} €))
By lemma 4.1, it holds AL = ¢! (P'(T)) if and only if

Al is an answer set of P'(T) U facts(guards N AL) =
B U 5" U Upsea, {n(1).}. By definition of the
guarded hypothesis space S’ we have that A’ is also
an answer set of B U H' U facts(guards N Al) where
H' = {h}|o(h(i)) = True}. This means that A, is an
answer set of B U H if and only if A, = ¢} (P'(T)). For
a specific o, suppose that it holds M,o = ¢i (P'(T)),
then, it must also hold M,o |= ¢ue(E ™). This implies
that A, = ¢ne(E~). By fact B.1, we conclude that for
every e~ € FE~, A, does not extend e~. Since o was
arbitrary, this holds for every answer set A, € AS(B U H),

completing this part of the proof.

Let A be an interpretation of B U H and let us define A’ :=
M U A. We now divide our discussion into two cases:
* If A ¢ AS(BU H), by theorem 2.2, A |~ ¢} (P(T))
which implies A’ £ ¢ (P'(T)).
* If A€ AS(BUH), by theorem 2.2, A = ¢} (P(T')) and
so A’ = ¢: (P'(T)). Furthermore, by assumption, for
every e~ € E7, it holds that A does not extend e~. By
fact B.1 A = ¢pee(E7) and thus A’ = @ (E 7).
In either case, we obtain A’ |= ¢(T). Since A C HBpys
was chosen arbitrary, it follows that M |= YVp(py ¢(T). O

The following corollary reformulates lemma B.2
in terms of the validity of the formula ¢(T) =

WVE o Ve w(D).

Corollary B.3 The formula ¢(T') is valid if and only if there
exists a model satisfying the formula ¥Vppy 1(T).

Our goal is now to reformulate lemma B.2 in terms of the
ASPP program P (T). To this end, we define two notions
of consistency of an interpretation of P, (T").

Definition B.4 Let T be a ground I1LPp a5 task and con-
sider the program P (T'). Consider the following condi-
tions:

1. for every Boolean formula F' such that F' is in NNFand
expansion(F) is included in P, (T) :

e if F' is the conjunction F©' = Fy A Fs, then,
formulap € Aifand only if formulap, € A and
formulap, € A;

e if F is the disjunction F' = F; V Fy, then,
formulap € Aifand only if formulap, € A or
formulap, € A;

 if I is an atomic formula p, then, formulap € A if
andonly ifp € A;

 if I is a negated literal —p, then, formulap € A if
andonly if np € A ;

2. for everyy € Vp(ry it holds that y € A" and ny € A’ ;

3. forevery h(i) € VIf,I(T) it holds that exactly one of h (1)
and nh (1) is included in A’ ;

4. we A,

5. formulay(ry € A;

6. for every y € Vp:(py it holds that exactly one of y and

ny is included in A’ .

We say that an interpretation A of P, (T') is:

* formula-consistent if satisfies satisfies conditions 1 and
6;
* consistent if satisfies conditions 1,2,3,4 and 5.

The formula-consistency property allows to threat inter-
pretations of P, (T') as interpretations of Boolean formulae.

Lemma B.5 Let M be a formula-consistent interpretation
of P, (T). It holds that formulap € M if and only if

Proof. Point 6 of definition B.4 allow us to use M as an
interpretation for Boolean formulas: for every variable p €
Vp/ (1) exactly one of p and np belongs to M. In the case
p € M we write M |= p. In the case np € M we write
M E —p.

The proof of the claim is a very trivial induction on F'
by using point 1 of definition B.4. As an example, consider
the case F' = F» A F5. By inductive hypothesis we have (i)
formulap, € M < M | Fy and (ii) formulap, €
M + M | F,. Suppose formularp € M, by point 1
of definition B.4 we have (iii)) formulap, € M and (iv)
formulap, € M. From points (i) and (iii) we obtain (v)
M [Fy; from points (ii) and (iv) we obtain (vi) M = Fs.
From (v) and (vi) we obtain M = F; A F, = F. Con-
versely, starting from M |= F we can easily establish that
formulap € M. O

We also prove that the consistency property is a neces-
sary condition for an interpretation A to be an answer set of
P,.(T). This reflects the proof of theorem 2.1.

Lemma B.6 Let T be a ground ILPy ag task. Let A C
HBp— () be an interpretation. If A € AS(P,, (T)) then A is
consistent.

Proof. Let us analyze the structure of a generic answer
set A € AS(P,,(T)) using the intuitions of the proof of
theorem 2.1. First, the predicate w (the saturation predi-
cate), must belong to A (point 4 of definition B.4) other-
wise the rule w :— not w would not be satisfied. In or-
der for w to be included in A, it must be supported by
the rule w :— formulayr), which in turn requires that
formulay) € A (point 5 of definition B.4). For ev-
ery y € Vp(r) it must hold that y € A and ny € A
(point 2 of definition B.4), otherwise the corresponding rules
y :— w. ny :— w.would notbe satisfied. Moreover, for
every h(i) € V;{) it must hold that exactly one of h (1)
and nh (1) is included in A (point 3 of definition B.4). If
neither is included, then the rule h (1) | nh (i) is vio-
lated, and if both of them are included, then A is not an an-
swer set because it contradicts the minimality requirement.
Regarding point 1 of definition B.4, we analyze the case such
that expansion(F') is in P, (T) where F' = F; A F» (the
other cases are addressed in a similar manner). By definition
of the expansion procedure we have that the rule R defined
as formulap :- formulap, formulag, isincluded
in the program P (T). If it holds formulap € A, then,
the only possibility is that it is supported by the rule Rz and
soitmustbe formulap, € Aand formulap, € A. Con-
versely, if it holds formulap € A and formulap, € A,
then the atom formulap is supported by the rule Ry and
so formulap € A.

Since A satisfies conditions 1,2,3,4 and 5 of definition
B.4, we conclude that A is consistent. O

Notice that the opposite direction of lemma B.6 does not
hold. In particular, not every consistent interpretation is an
answer set of P (T).

We now reformulate lemma B.2 in terms of the ASPP
program P, (T'). In particular, given a stable model of the
program P, (T") we can compute an hypothesis satisfying
cautious conditions and vice-versa.

Lemma B.7 Let T be a ground ILPy zg task, let A’ C

HB) be a consistent Herbrand interpretation of P.(T)

, and define H == {h; | h (i) € A’}. Then the following are
equivalent:

1. A" € AS(P,(T)) ;
2. Forevery A € AS(BU H) and every e~ € E~, it holds
that A does not extend e~ .

Proof. We have to prove two implications. Again, the proof
uses concepts from theorem 2.1 by Eiter and Gottlob (1995).

Suppose that A" € AS(P, (T)). Consider any formula-
consistent interpretation I that agrees with A’ on the
assignment of the atoms h (i) and nh (i) for every i,
does not include w, and contains exactly one of y and
ny for every y € Vp(r). Such an interpretation I can-
not be a stable model, as otherwise it would contradict
the minimality of A’. Since I is not a stable model, the

only possibility is that formulayy € I. By lemma
B.5 it holds that I = (7). Since the choice over vari-
ables y and ny for every y € Vp(r) was arbitrary, this
proves that M = V Vpipry o(T) where M is defined
as M = {h(i) |h(i) € A’}. By lemma B.2 it follows
directly that for every A € AS(BU H) and every e~ € E—,
it holds that A does not extend e .

From lemma B.2 it follows that (i) M = V Vp(ry ¥(T)
where M = {h (i) | h(i) € A’}. Since A’ is consistent,
and point (i) holds, it follows that A’ is a model of P, (T)4".
We have to prove that A’ is minimal. Notice that des(T)Al
is the program P, (T') without the rule w :— not w.
Suppose by contradiction that there exists a model J of
P,.(T)*" such that J C A’. J must coincide with A’ on
atoms h (i) and nh (1) for every h(i) € V. It must
be w ¢ J and for every y € Vp(p) exactly one atom
between y and ny is included in J. Notice that such a
model J is by definition formula-consistent. By point (i)
it must be J = 9(T) and by lemma B.5 it follows that
formulayr) € J. However this implies w € J which
leads to a contradiction. This proves that A’ must be a mini-
mal model of P, (T)*" and so A’ € AS(P,,,(T)). O

From lemma B.7, it follows that the program P, (T') is
correct and complete for tasks 7" with only negative exam-
ples.

Lemma B.8 Let T be a ground ILPp s task. Let T'
be the task T without positive examples. It holds that
ILPLas(T) = {{hZ |h(i) e A} | A GAS(Pd?S(T))}.

Proof. LetT = (B,S,ET,E~) be a ground ILPp a5
task, and let 7" = (B, S,0, E~) denote the corresponding
task with all positive examples removed. By the definition
of the encoding P (-), it holds that P, (T') = P, (1"),
since the construction only depends on negative examples.
Let A € AS(P,.(T)) be an answer set of the encoding.
Define the hypothesis H = {h; | h(i) € A}. By
lemma B.7 (using the implication 1 — 2), we know that
for every A’ € AS(B U H) and for every e~ € E—,
it holds that A’ does not extend e~ . Therefore, by def-
inition of 7, H is an inductive solution for 7". Since
this holds for every A € AS(P, (T)), it follows that
ILPpas(T') 2 {{hi|h(i) € A} | A€ AS(P,,(T))}.
Furthermore, following an analogous reasoning using the
implication 2 — 1 of lemma B.7, we prove that
ILPpas(T') C {{hi;|h(i) € A} | A€ AS(P,,(T))}.
This concludes the proof.]

We now consider properties of the brave entailment mod-
ule P, (7). First notice that the program P;f (T') is not self-
contained: atoms of the form h (i) do not appear in the head
of any rule. Therefore, in order to use the Pd'g(T) encoding
as a standalone module, it is necessary to add rules that ex-
plicitly encode the fact that each h (i) may or may not be-
long to an answer set. We define the completed version of

P (T) (denoted Pj{sl (T)) as the program:
P (T):=PE(T)U{n (i) | nh(i).|h; €S}

LemmaB.9 Ler A € AS(P;{SI(T)), let A; =
{q| inAs(q,i) € A} and let H = {h; | h (i) € A}. It
holds that:

1. If interpretation (i) € A, then A; € AS(BUH) ;
2. A; extends the example e; if and only if it holds
cov (i) € A.

Proof. The proof is trivial and similar to the ones by
Law (Law 2018) for the ILASP1 algorithm. Point 1 follows
since each atom g in a rule R € B U S is encoded by
the (non-ground) atom inAs (g, M) and the encoding of
R contains the atom interpretation (M) in its body.
Moreover each rule h; in S is encoded by adding the atom
h (i) in its body.

We now prove point 2. Consider an example e;. By ap-
plying point 1 to rule Ex; (i) we have that A; € AS(BU H).
It holds cov (i) € A if and only if for every atom e in

the inclusion set of e; it holds inAs (e"“,i) € A and for

every atom inAs (e?""d7 1) in the exclusion set of ¢; it holds
ej“l ¢ A;. This holds if and only if A; extends the example
€;.

O
Lemma B.8 establishes correctness and completeness for the
module P, (-) when used with tasks with only negative ex-
amples. We now establish the counterpart for the module
P (+). In particular, from lemma B.9 it follows that the pro-
gram P;f (T) is correct and complete for tasks 7" with only
positive examples.

Lemma B.10 Let T be a ground ILPpas task. Let T’
be the task T without negative examples. It holds that

TLPLs(T') = {{hi | n (1) € A} | A AS(PE (7))},
Proof. Let H € ILPp4s(T") be an inductive solution of

T’. We construct an interpretation A of P. (T') as follows:

1. h(i) € Aifh; € H;

2. nh(i) € Aifh; ¢ H;

3. cov (i) € Aforeverye; € ET;

4. inAs (p,1) € A for every atom p in the inclusion set
ofe; € ET;

5. inAs (g, i) ¢ A forevery q in the exclusion set of e;.

It can be verified that A is a stable model of P, (T'). In par-
ticular, note that for each h; € S, exactly one of h (1) and
nh (1) must belong to A, otherwise, A would not satisfy
minimality.

Conversely, suppose A € AS(P;. (T)), and define
the hypothesis H = {h; | h(i) € A}. By con-
struction of the encoding (specifically, rule Ex;(i), we
have interpretation (i) € A for every e¢; € ET.
Rule Ex3(7) then ensures that cov (i) € A. By lemma B.9,
the interpretation A; = {p | inAs (p, 1) € A} is a sta-
ble model of B U H and extends the example e;. Since this

holds forevery e; € E *, we conclude that H is an inductive
solution of T”. a

Lemmas B.8 and B.10 establish the correctness and com-
pleteness of the two submodules that compose Py;(-). We
now show that their combination yields a full encoding that
is correct and complete with respect to the inductive solu-
tions of ground I L Py, 4 tasks.

Theorem 4.4 (Correctness and completeness) Let T =
(B,S,E* E™) be a ground ILPy A5 task. It holds that
ILPLas(T)={{hi| h(i) € A} | A € AS(Pu;(T))}-

Proof. LetTT = (B,S,E*,0) and T~ = (B,S,0,E~)
denote the positive-only and negative-only variants of 7', re-
spectively. Then:

[LPpas(T) = ILPpas(T) N ILPyas(T™) @)
= {{hiln) eaplae AS(PL,;,/(TH)} 3)
N {{hi | h(i) € A} | A€ AS(Py(T7))}

= {{hiln) eaplae AS(PE (T)) @)

NAS(P(T7)}
= {{niIn) €4} 4 € AS(PE (T) U PL(T7)}

(&)
= {{h In(1) € A} | A€ as(Ry (1)U PR(T) }

(6)
= {{hi|h (1) € A} | A€ AS(PL(T)U P (T))} (D
= {{hi [h (1) € A} [A € AS(Pus(T))} (8)

Equation (2) follows directly from the definition of
ILPrs5(T) as requiring both brave coverage of positive
examples and cautious rejection of negative ones. Equa-
tions (3) and (4) follow from lemmas B.8 and B.10,
which establish the correctness of the individual posi-
tive and negative encodings. To justify Equation (5), ob-

serve that: (i) atoms(Pj. (T)) N atoms(P,(T~)) =
{h(i), nh(i) | h; € S} and (ii) every answer set of
each module contains exactly one of h (1) or nh (i) for
each h; € S. As a consequence, the intersection of answer
sets from the two modules determines the same hypothesis
(i.e., the same assignment to h (1) atoms) as any answer
set of their union. Equation (6) holds because the modules

Pt (T*)and P, (T™) are constructed to handle only pos-
itive and negative examples, respectively. Therefore, their
semantics remain unaffected when both modules are used
with the full task 7' = (B, S, E*, E~). Equation (7) holds
because the rules of the formh (i) | nh (i) do not need
to appear in both modules. Since they are already included
in P, (T), they can be safely omitted from P}, (T, allow-
ing us to use P, (7T) in its place. Finally, equation (8) holds
by definition of Py;(T') as the union P (T') U P, (T). This
concludes the proof. O

So far, we have established the correctness and complete-
ness of Py;(-). We now focus on the structural complexity
of the encoding.

Lemma 4.5 LetT = (B,S,E*, E~) bea ground I LPr s
task. Then the following holds:

1. |Pa(D)| € © (|T| + |6, (P'(T))])
2. |ground(Pa(T))| € O(|BU S| x |E*| + |E~ |+

Bl + [S] + |0, (P'(T))])
3. If BU S is tight then | Py (T')| € © (|T']) and

|ground(Py;s(T))| € ©(|BU S| x |[ET|+

[E~[+ Bl +S]).
Proof. The total size of Py (T) is the sum of the sizes of
P,.(T) and P;f (T). The number of rules in P (T) is in
O(|B| + |S| + |ET|), since each rule and each positive ex-

ample contributes a constant number of clauses. The module
P, (T') is obtained by translating the formula

O(T) = IVE 1y WVp(ry (NNF (67,(P'(T)) = dueg(E7)))

into a ground ASPP program.

Observe that the NNF transformation is linear in the size
of its argument. However, the presence of bi-implications
may cause an exponential blow-up during the transforma-
tion. We therefore examine the size of ¢(7") more carefully:

|6(T)] = INNF(¢5(P'(T)))| + INNF(dneg (E7))| (9)
= INNF(¢5(P"(T)))| + INNF(¢j,,,, (P(T)))]| (10)
+ INNF (¢neg (E7))]
= INNF(¢5(P"(T)))] + ©(|io, (P'(T))1) (11)
+ O(|Pueg(E7)])

= INNF(¢3(P"(T)))] + O(|67,, (P (T))]) + O E™)
(12)

= O(|¢55(P (T))]) + O (|iog,(P'(T))]) + O(IE™]) (13)

= O(IB U S|) + [, (P'(T))| + O(IE™) (14)

Equation (9) reflects the definition of ¢(T"). Equation (10)
follows form the definition of ¢} (P’(7T)) as the conjunc-
tion of ¢j(P'(T)) and ¢j,,,(P'(T)). Equation (11) holds
because both ¢, (P (1)) and ¢yee(E~) do not contain bi-
implications, and their NNF transformation is therefore lin-
ear in size. Equation (12) trivially follows by the definition
of ¢nee(E~). We now consider equation (13). Notice that

;#(P'(T)) contains exactly one bi-implication for every
atom a € atoms(P'(T)) \ S where S = {h (1) | h; € S}.
The structure of ¢7(P'(T)) is as follows:

/\ lhs(a) <> rhs(a)
a€atoms(P’(T))\S

Each bi-implication can be rewritten as the conjunction of
two implications:

A (hs(a) — rhs(a)) A

a€atoms(P'(T))\S

(rhs(a) — lhs(a))

This transformation only doubles the size of the formula,
and since NNF of an implication is linear, the transforma-
tion is still linear in total size. Finally, equation (14) fol-
lows from the observation that each rule R € B U S

contributes a bounded number of atoms to the completion
¢;(P'(T)). This analysis shows that the size of P (T') is
in O(|B| + [S] + ¢}, (P'(T))| + |E~[). By summing this
with the size of P (T'), we obtain the claimed bound for
| Pois(T')].

To prove point 2, observe that P, (-) is a ground program.
In P\ (T), eachrule in BUS is instantiated once for each in-
terpretation label interpretation (z), that is, once per
positive example.

For point 3, recall that the formula ¢;,,,,(P'(T')) is empty
if and only if the program B U S is tight, in which case the
loop formulas are not required. (]

C Proofs from Section 5

We now provide proofs regarding the grounding process. We
prove that every safe ILPj 45 task T is equivalent to its
grounded version.

Theorem 5.2 Let T be a (possibly non-ground) safe
ILPp s task. Let T' = ground(T). It holds that T and T’
are equivalent.
Proof. LetT = {B,S ={h1,...,hs},ET,E~} and let
T = {B',S',E*,E~} be the ILPZAS task ground(T)
where:

* U is the Herbrand universe of B U S.

e B = URieBgroundU(Ri)

o §"={hl| h; €S, h; = ground;(h;)}
Let .J be a set of indexes {j1,...,jx} suchthat 1 < j; < s

for every j; € J. Define the corresponding hypothesis for
both T and 7"

le{hjl,.. }CS/

To prove the theorem we have to prove that H is an inductive
solution of 7" if and only if H' is an inductive solution of T”,
in symbols:

H € ILPpas(T) < H' € ILPMY(T') (15)

h]k}CS H/ —{h

o

We begin by studying answer sets of B U H and B’ U
Un cnr h;-. For simplicity we define the following abbrevi-

ations:
P=BUS Py=BUH U=HUp

Uy =HUp, Py=BU |J H
hieH’

Consider the case in which Py is non-ground. We have that
A € AS(Pg) if and only if A € AS(ground;;,, (Pyr)). The
notation highlights the fact that the ground instance of each
rule in Pp is computed considering the Herbrand universe
of Py (i.e. Ug). We now prove the following fact:

A € AS(groundy;, (Py)) — A € AS(groundy;(Pp)) (16)

To prove equation (16), we proceed by induction. In partic-
ular, let ¥ C Pandlet F* = FU{h} where h € P\ F,
we have to prove that if A € AS(groundyy, (Pr)) then
A € AS(groundyy . (Pp)). If it holds HUp = HUp+ ,

i.e. h does not introduce new terms, then trivially we have
A € AS(groundyy . (Pu)). Consider now the case where
HUr C HUp+ and in particular let V = HUp+ \ HUF
the set of terms in HUp+ but not in HUp. Let W de-
note the set of non-ground atoms appearing in Pg. In pro-
gram groundyy . (Pp), atoms in W can be instantiated
also with terms in V. Denote with Z the ground instances
of atoms in W such that, each z; € Z contains at least
one term in V, i.e, z; is of type z;(... Vs - .) for some
v; € V. Suppose to prove that (i) each atom in Z can-
not be supported by groundy,, . (Pp). Consider arule R €

groundyy . (Pu) \ groundyy, (Pp). By definition R must

contain an atom in z;(...,v;,...) € Z and since the task is
safe it must be that (ii) there must exists z/(...,v;,...) €
Z N body™ (R), i.e., there exists a positive literal 2z, € Z
occurring in the body of R and such that z; contains the
term v;. By combining (i) and (ii) we obtain that R can
never be activated and hence A € AS(groundyy . (Pp)).
To prove point (i), notice that, trivially, (iii) groundy;,. (Prr)
cannot support any atom in Z. Interestingly, also every rule
in K = groundyy (Pp)\ groundyy, (Pg) cannot sup-
port an atom in Z. Consider G(K, Z) as the following graph
(which is a slight modification of the positive atom depen-
dency graph defined in section 2):

G(K,Z)=(Z,{(b,h) | R € K,b € body" (R),
h = head(R),b € Z,h € Z})

Let G°(K,Z) be the condensation of G(K,Z), i.e. the
graph in which each strongly connected component is con-
tracted to a single vertex. Let 71 = (C4,...,Cy) be a
topological sorting of G¢(K,Z). Notice that (by using
property (iii)) each atom in C; cannot be supported by
any rule in groundy, (Pp). By a simple inductive argu-
ment it holds that each atom in C; cannot be supported
in groundyy (Pp). This proves property (i) and equation
(16).

The converse of equation (16) also holds. In particular, we
have:

A € AS(groundp, (P)) < A € AS(groundp(Py)) (17)

Equation (17) is proved in a similar manner. We proceed by
induction by removing rules from P and gradually arriving
to Py, in particular we prove that if A € AS(ground(Pr))
then A € AS(groundyp— (Py)) where F C S and F~ =
F \ {h} for h € F \ Pgy. This is trivially verified if
HUp = HUp-. Consider the case HUr 2 HUp- and
let V. = HUp \ HUp-. This case is addressed exactly like
in the proof of equation (16). The intuition is that rules in
K = ground(Py) \ ground - (Pg) can never be activated
since (iv) ground— (Py) cannot support any atom with a
term in V" and (v) at least one term in 1 appears in the body
of every rule in K (since 7T is safe). This proves equation
a7.

The key intuition behind equation (16) and equation (17)
is that, due to the safety of the task, rules involving new
terms introduced by a larger Herbrand universe are not acti-
vatable and thus do not influence the stable models.

We can now prove that an answer set of Py is also an

answer set of Py, and vice-versa:
Ae AS(PH)

< A € AS(groundy;, (Pr))

< A € AS(groundy; (Py))

< A € AS(ground;;(BU H))

—~ A€ AS U groundy; (R;) U U groundy; (h;))

R;eB hi€H
“AcAS(B'U |)
h,E€H’
+ A € AS(Py)

—~ o~~~

We now conclude the proof of the theorem by proving
equation (15):

HEILPLAs(T)
o Vet € ET 3A € AS(Py

(Pg) Aextends et and
Ve~ € B~ VA € AS(Py

(

(

A does not extend e~
< Vet € ET 3A € AS(Py;) A extends e and
Ve~ € E- VA € AS(Py;

& H' € ILPMS(T')

A does not extend e~

~—_— — ~— —

|

As a direct consequence of theorem 5.2, we now

show that, given a correct and complete encoding F,,.

for the grounded framework ILP;%%, the composition

P,,.(ground(-)) yields a correct and complete encoding for
every safe I LPr 45 task.

Theorem C.1 (Correctness and completeness) Let

T = (B/{h1,...,hs},ET,E7) be a (possibly
non-ground) safe ILPras task. Let P,.(-) be a
correct and complete encoding for ground tasks in
the ILP/%’ framework, i.e., for every ground task
T = (B, {h,...,n.},E'YE'"7), it holds that:
ILPS(T) = ({0 |57 (1) € A} | A € AS(Pure(T"))}
Then, the composition P,,.(ground(T)) is a correct and
complete encoding for T, that is the set ILPpas(T)
corresponds to:

{{hi| h(i) € A} | A€ AS(P.(ground(T)))}

Proof. LetT" = (B" {h/,...,h!'}, E* E~) be the task
ILP/9%% T" = ground(T). Let . By theorem We have that:

H = {hjl,...,hjl}€ILPLAs(T) (18)
— H' = {h;’l, o h;’l} € ILP}% (ground(T)) (19)
<> JA € AS(P,,c(T")) such that (20)

{h"7 (i) | K" (i) e A} = H"

Equation 19 follows from theorem 5.2. Equation 20 follows
from the fact that P,,.(-) is a correct and complete encoding
for ground 1L P}%’% tasks. O

