
Planning while Believing to Know

University of Udine
Department of Mathematics, Computer Science and Physics

Candidate: Advisor:
Francesco Fabiano Prof. Agostino Dovier

Co-Advisors:
Prof. Enrico Pontelli

Prof. Alessandro Dal Palù

Thesis submitted for the degree of
Doctor of Philosophy in Computer Science, Mathematics and Physics

Cicle: XXXIV Years: 2018–2021

Ai miei Genitori

To my Parents

Abstract

Over the last few years, the concept of Artificial Intelligence (AI) has become
essential in our daily life and in several working scenarios. Among the various
branches of AI, automated planning and the study of multi-agent systems are central
research fields. This thesis focuses on a combination of these two areas: that is,
a specialized kind of planning known as Multi-agent Epistemic Planning. This
field of research is concentrated on all those scenarios where agents, reasoning
in the space of knowledge/beliefs, try to find a plan to reach a desirable state
from a starting one. This requires agents able to reason about her/his and others’
knowledge/beliefs and, therefore, capable of performing epistemic reasoning. Being
aware of the information flows and the others’ states of mind is, in fact, a key
aspect in several planning situations. That is why developing autonomous agents,
that can reason considering the perspectives of their peers, is paramount to model
a variety of real-world domains.

The objective of our work is to formalize an environment where a complete
characterization of the agents’ knowledge/beliefs interactions and updates are
possible. In particular, we achieved such a goal by defining a new action-based
language for Multi-agent Epistemic Planning and implementing epistemic solvers
based on it. These planners, flexible enough to reason about various domains and
different nuances of knowledge/belief update, can provide a solid base for further
research on epistemic reasoning or real-base applications. This is true, especially
considering that one of the proposed approaches formally verifies that the obtained
plan is correct with respect to semantics on which is based.

This dissertation also proposes the design of a more general epistemic planning
framework. This architecture, following famous cognitive theories, tries to emulate
some characteristics of the human decision-making process. In particular, we
envisioned a system composed of several solving processes, each one with its
own trade-off between efficiency and correctness, which are arbitrated by a meta-
cognitive module.

Contents

List of Figures ix

List of Tables xi

1 Introduction & Preliminaries 1
1.1 Motivation . 1
1.2 Planning: Notation and Concepts 4
1.3 Reasoning about Knowledge and Beliefs 16
1.4 Multi-agent Epistemic Planning . 28

2 Possibilities-Based MEP Action Language 39
2.1 Background . 39
2.2 The Epistemic Action Language mAρ 55

3 Communication with Trust 65
3.1 Trust in mAρ . 65
3.2 Capturing Trust with Update Models 77

4 Trust, Misconception, and Lies in MEP 83
4.1 Agents’ Attitudes and Inconsistent Beliefs 83
4.2 Updated Transition Function . 87
4.3 Related Work . 100

5 Comprehensive Multi-Agent Epistemic Planners 103
5.1 Background . 103
5.2 EFP: an Epistemic Forward Planner 106
5.3 PLATO: an Epistemic Planner in ASP 137

6 “Fast and Slow” Epistemic Planning 149
6.1 Background . 149
6.2 MEP System-1 and System-2 . 153
6.3 A Fast and Slow Epistemic Architecture 159

7 Conclusion 167

vii

viii Contents

Appendices

A Propositions Proofs 171
A.1 Preliminary Definitions . 171
A.2 Proofs of Propositions 2.3 to 2.5 . 174
A.3 Proofs of Propositions 3.1 and 3.2 179
A.4 Proof of Proposition 4.1 . 186
A.5 Proofs of Propositions 5.1 to 5.3 . 192

Bibliography 201

List of Figures

1.1 The World Block domain. 6
1.2 The Planning Problem in the World Block domain. 8
1.3 A planning tree for the World Block domain. 11
1.4 The Vacuum-Cleaner domain with both dirty rooms. 13
1.5 The execution of the action Clean in a conformant domain. 14
1.6 Vacuum-Cleaner domain AND-OR tree. 14
1.7 The Soccer domain. 16
1.8 The Kripke structure that represents Planning Domain 1.4. 24
1.9 The Kripke structure of the Planning Domain 1.4 variation. 30
1.10 Example of e-State after update after an announcement. 31
1.11 The execution of the plan ⟨open⟨A⟩, peek⟨A⟩, announce⟨A⟩(heads)⟩. 35

2.1 Execution of an action instance. 43
2.2 Update templates of action types described by Baral et al. [2022]. . 48
2.3 Well-founded sets represented through graphs [Aczel, 1988]. 49
2.4 Representation of the non-well-founded set Ω = {Ω} [Aczel, 1988]. . 50
2.5 Bisimilar Kripke structures. 52
2.6 Representation of a generic possibility w. 54
2.7 From a possibility to a Kripke structure. 55
2.8 The initial state. 62
2.9 Execution of distract_C⟨A⟩. 62
2.10 Execution of open⟨A⟩. 63
2.11 Execution of peek⟨A⟩. 63
2.12 e-State, generated by mAρ and mA∗, size comparison. 64

3.1 The initial e-state described in Planning Domain 3.1. 71
3.2 The result of applying an un-trustworthy announcement. 71
3.3 The result of applying a mis-trustworthy announcement. 74
3.4 The update template (Σ, σ) for the un-trustworthy announcement. . 79
3.5 The update template (Σ, σ) for the mis-trustworthy announcement. 81

4.1 The initial state of Planning Domain 4.1. 93
4.2 Correct sensing example. 94

ix

x List of Figures

4.3 Wrong sensing example. 95
4.4 Announcement with trustful & mistrustful listeners example. 96
4.5 Announcement with mistrustful & stubborn listeners example. . . . 97
4.6 Lie example. 98

5.1 Comparison between EFP 1.0 and P-MAR on SC. 112
5.2 Example of a planning graph. 130

6.1 The schema of MC-2. 158

List of Tables

1.1 Knowledge and beliefs axioms [Fagin et al., 1995, chapter 3]. 26
1.2 SAT problem complexity for DEL [Fagin et al., 1995]. 37
1.3 Complexity of the plan existence problem [Bolander et al., 2015]. . . 38

2.1 Action types and observability relations Baral et al. [2015]. 46
2.2 Observability relations of the actions instances in ∆. 61

5.1 Runtimes for the CC domain for EFP 1.0 and EFP 2.0. 112
5.2 Runtimes for the GR domain for EFP 1.0 and EFP 2.0. 113
5.3 Runtimes for the CB domain for EFP 1.0 and EFP 2.0. 113
5.4 Runtimes for the AL domain for EFP 1.0 and EFP 2.0. 114
5.5 e-States’ size comparison between different solving processes. 115
5.6 Runtimes for the GR domain for EFP 2.0 and RP-MEP. 117
5.7 Time consumption of EFP 2.0 and EFP 2.1 on the CB domain. . . . 122
5.8 Time consumption of EFP 2.0 and EFP 2.1 on the AL domain. . . . 122
5.9 Time consumption of EFP 2.0 and EFP 2.1 on the GR domain. . . 122
5.10 Time consumption of EFP 2.0 and EFP 2.1 on the CC domain. . . . 123
5.11 Memory consumption of EFP 2.0 and EFP 2.1 on the CB domain. . 123
5.12 Memory consumption of EFP 2.0 and EFP 2.1 on the SC domain. . 123
5.13 Memory consumption of EFP 2.0 and EFP 2.1 on the GR domain. . 124
5.14 Memory consumption of EFP 2.0 and EFP 2.1 on the CC domain. . 124
5.15 Solving times of the uninformed searches of EFP 2.1 on CB. 125
5.16 Solving times of the uninformed searches of EFP 2.1 on AL. 126
5.17 Solving times of the uninformed searches of EFP 2.1 on SC. 126
5.18 Solving times of the uninformed searches of EFP 2.1 on GR. 126
5.19 Solving times of the uninformed searches of EFP 2.1 on CC. 127
5.20 Comparison of uninformed and informed search on the CC domain. 128
5.21 Performances comparison between EFP 2.1 and PLATO. 146

xi

xii

Thesis Organization

Here we will provide a high-level overview of each chapter of the thesis. Alongside
the chapters’ content, we will also provide references to published scientific articles—
produced during the Ph.D. period—that constitute the backbone of this work. These
articles have been validated and enriched by the peer-review process, providing
a solid foundation for this dissertation.

1. The first chapter serves as an introduction to the whole thesis. It starts by
providing the motivation for our work, explaining why we decided to direct
our research efforts to Multi-agent Epistemic Planning. It then illustrates some
basic notions related: (i) to the planning area; (ii) to the epistemology world;
and (iii) to their connections. While this chapter does not present any new
contributions, it helps in setting the foundations necessary to understand the
actual contributions. Given the introductory nature of this chapter, we decided
to take inspiration from more experienced authors. In particular, the prominent
reference for the planning introduction was provided by Russell and Norvig [2010]
while, for the epistemic preamble we referred to Fagin et al. [1995], Bolander
and Andersen [2011], Baral et al. [2015], van Ditmarsch et al. [2015].

2. The second chapter introduces the first contribution of our research. In particular,
we present a variation of an epistemic action language, i.e., a language used to
define Multi-agent Epistemic Planning problems. This new language is based
on non-well-founded data structures, called possibilities—initially theorized
by Gerbrandy and Groeneveld [1997]—rather than the more classical Kripke
structures. The chapter illustrates the components of the language highlighting
its advantages with respect to its predecessor, concluding with some remarks on
the correctness of the new specification. To provide enough information about
the newly adopted possibilities, we mostly referred to works by their original
authors, i.e., Gerbrandy and Groeneveld [1997], Gerbrandy [1999]. On the other
hand, the formal definition of the new language was firstly presented in our
work Fabiano et al. [2019] and later improved in Fabiano et al. [2020].

3. Chapter three further analyzes the concept of epistemic action languages. In
particular, it explores how to enrich the aforementioned language with features

xiii

xiv List of Tables

that would allow it to represent more realistic scenarios. We accomplished that by
formalizing the idea of trust between agents. This extension has been devised for
both the possibilities-based and the Kripke structure-based languages. Finally,
we provide some fundamental properties to ensure that the communications with
trust behave as expected. This chapter derives from the work Fabiano [2020]
where we initially tackled the idea of formalizing trust in our epistemic action
language.

4. As a final advancement in our formalization of a general epistemic language
specification we present, in chapter four, the idea of agents’ attitudes. These
attitudes are used to associate each agent with a particular set of biases about
the information received by others. With these extra characterizations, we can
formalize domains with a wider spectrum of interactions; allowing for epistemic
planning domains to become even more realistic. As for the previous chapters,
we captured some fundamental properties of this new addition ensuring its
correctness. This idea was firstly explored and formalized in Fabiano et al.
[2021a].

5. In the fifth chapter we present the implementation of a general and comprehensive
epistemic solver. This C++ planner, called EFP, integrates all the previous
theoretical advancements and constitutes a tool that we hope will be adopted
by the community as the basis for future research. EFP is able to plan while
considering belief relations and concepts such as lies, misconceptions, trust,
and so on. While generality is our primary concern, EFP shows state-of-the-art
performances in reasoning on complete epistemic states as we can see from
the various experimental evaluations presented in the chapter. Finally, we also
present PLATO, a version of the planner in Answer Set Programming. This
planner and its use of the declarative approach are then compared with EFP and
its more classical imperative paradigm. Thanks to its declarative nature PLATO
allows us to formally validate its behaviour, with respect to the underlying
semantics, and therefore the computed plans. Furthermore, this permits to
empirically confirm the results obtained by the versions of EFP that implement
the underlying action language of PLATO.

The EFP version presented is the result of several scientific productions where
its internal structure has been optimized and enriched; in chronological order,
these are Le et al. [2018], Fabiano [2019], Fabiano et al. [2020, 2021a]. PLATO,
instead, has been formalized and implemented initially in Burigana et al. [2020].

6. Chapter six discusses the integration of a famous cognitive theory, that is
“thinking fast and slow” by Kahneman [2011], into the modern concept of AI.

List of Tables xv

This chapter stems from a collaboration with a research group from the IBM
Thomas J. Watson Research Center. While the joint project aims to analyze
cognitive theories to widen the AI capabilities, in this chapter we focus on how
this research can affect the epistemic planning setting. In particular, the chapter
will identify what it means to think fast and slow in Multi-agent Epistemic
Planning, examining also the role of the meta-cognition in an architecture
that employs the aforementioned paradigm. The chapter also introduces an
architecture that, following the schema proposed by Kahneman, is able to tackle
epistemic planning problems. This final contribution is based, alongside countless
hours of discussion with the IBM research group, on the scientific contributions
by Booch et al. [2021], Fabiano et al. [2021b], Ganapini et al. [2021, 2022].

7. The last chapter concludes the thesis with some final remarks on the various
contributions and with a brief description of possible future works.

xvi

An investment in knowledge pays the best interest.

— Benjamin Franklin
Poor Richard’s Almanac

[Franklin, 1750]

1
Introduction & Preliminaries

Contents
1.1 Motivation . 1
1.2 Planning: Notation and Concepts 4

1.2.1 Basic Concepts . 5
1.2.2 Planning Problem Categories 9

1.3 Reasoning about Knowledge and Beliefs 16
1.3.1 Epistemic Logic . 18

1.4 Multi-agent Epistemic Planning 28
1.4.1 Epistemic Actions . 29
1.4.2 Multi-agent Epistemic Planning Problem 32
1.4.3 Complexity Overview 35

1.1 Motivation

Artificial Intelligence (AI for short) is a term, coined by McCarthy, Minsky,

Rochester, and Shannon in 1955, used to capture the idea of autonomous machines

which have capabilities that allow them “to think”. While exploring what it means

“to think” deserves a dissertation on its own, we make use of this term in a loose

and non-formal way to provide the reader with a general intuition of what an

autonomous agent should accomplish. This concept stems from one of the most

important scientific figures of the last century, considered to be the founding father

1

2 1.1. Motivation

of computer science and Artificial Intelligence, Alan Turing. In the first sentence

of his publication “Computing Machinery and Intelligence” [Turing, 1950], Turing

proposed “to consider the question, ‘Can machines think?’”. He also provided

meaning to what it means for a machine “to think” introducing the well-known

Turing’s test, which states that machines can be considered intelligent when they

can mimic the behavior of humans.

With his contribution, Turing effectively initiated the scientific quest of formal-

izing and constructing agents that are able to act on the world out of their own

volition. After McCarthy, Minsky, Rochester, and Shannon proposed and organized

the first meeting on Artificial Intelligence in 1956 [McCarthy et al., 2006], researchers

started to investigate this topic with several revolutionary accomplishments in both

theoretical and practical aspects of AI. In particular, the idea of intelligence has been

refined to incorporate the fundamental aspect of rationality that does not always (nor

often) coincide with human behavior. That is why, nowadays, the idea of machines’

intelligence is not limited to the sole human behavior imitation but also considers

the possibility of agents that reason, or act, following logic, as elegantly summarized

by Russell and Norvig in their book [Russell and Norvig, 2010, chapter 1].

Alongside the novelties introduced at the conceptual level, the AI community

formalized and developed several techniques that permit to model agents which

can solve intricate problems in autonomy. These techniques range from the use of

various formal logics, and in particular modal logic, to the creation of neural-based

structures. The former is an area of study that stems from the field of philosophy

which, after the initial efforts of Clarence Irving Lewis, evolved rapidly [Ballarin,

2021] and has become an essential tool to define rational behavior for our systems.

The latter is a technology that, imitating the physiology of our brain, allows the

agents to perform reasoning tasks emulating (to some degree) the human behavior.

While this idea was firstly studied in the early days of AI, only recently, thanks to

figures such as Geoffrey Hinton, Yoshua Bengio, and Yann LeCun, neural networks

are adopted to solve a wide spectrum of problems, as reported by Bengio et al. [2021].

1. Introduction & Preliminaries 3

While the field of AI has constantly evolved after the intriguing question posed

by Turing in 1950, over the last few years the concept of Artificial Intelligence has

become more and more prominent in our life, whether we are computer science

researchers or not. The concept of autonomous agents, often identified by software

processes, performing tasks of different nature has been accepted and embraced

in both our daily life and in the industry. That is why, AI-driven solutions are,

nowadays, frequently used to tackle problems that range from mundane ones—e.g.,

teaching how to play Sudoku [Hanson, 2021]—to very intricate tasks that require a

high-level of expertise—e.g., analyzing CT scans to help radiologists in identifying

anomalies [Chu et al., 2019, Fabiano and Dal Palù, 2022]. Not only AI techniques

are widely deployed, but it is becoming essential for the majority of the real-world

scenarios, e.g., Industry 4.0, to exploit tools derived from the fields of automated

reasoning and knowledge representations [Lasi et al., 2014].

Even if AI is gaining popularity, most of the research efforts are not directed to

this topic as a whole but to specialized sub-areas; e.g., natural language recognition,

knowledge representation/manipulation, and formal verification. In particular, the

field of automated planning is one of the most important and most studied branches

of AI. As said by Russell and Norvig [2010, chapter 10], “we have defined AI as

the study of rational action, which means that planning—devising a plan of action

to achieve one’s goals—is a critical part of AI”. That is why we decided to focus

our research on the planning problem and, in particular, on those situations where

multiple entities interact with each other. These scenarios, known as multi-agent

for the presence of multiple active entities, are ubiquitous in everyday life and

represent the majority of the “real-world” problems.

To correctly address multi-agent problems, a solving process needs to reason

not only on the state of the world but also on its information flows. As said

by [Van Ditmarsch et al., 2007] “information is something that is relative to a

subject who has a certain perspective on the world, called an agent, and that is

meaningful as a whole, not just loose bits and pieces. This makes us call it knowledge

4 1.2. Planning: Notation and Concepts

and, to a lesser extent, belief ”. That is why epsitemic1 and doxastic2 reasoning come

into play in formalizing such scenarios. These types of automated reasoning are used

to capture the knowledge or beliefs relations among multiple agents and provide

a tool to formalize those settings where the information flows must be considered

by the solving process, e.g., economy [Aumann et al., 1995], security [Balliu et al.,

2011], justice [Prakken, 2013] and politics [Carbonell Jr, 1978].

1.2 Planning: Notation and Concepts

According to Cambridge Dictionary [2021], a plan is “a method for doing or achieving

something, usually involving a series of actions [. . .]” implying that planning

permeates every thought-out process performed by humans, animals, or even

machines. To plan is, in fact, to devise a way of reaching an objective, whether this

goal is to have enough food for the day or to build a skyscraper. The ability to divide

processes, independently of their complexity, into “smaller” and more manageable

ones is paramount to accomplish one’s objectives and, ultimately, to manipulate

the environment to her/his advantage. That is why, designing autonomous agents

that incorporate the ability to select the best course of action to achieve their goals,

is of the utmost importance in Artificial Intelligence.

While the concept of automated planning has several variations (e.g., classi-

cal, conformant, epistemic, etc.) that are used to describe different real-world

scenarios, all of them share the same objective: given an initial configuration

of the environment, find a sequence of permitted actions to reach the desired

configuration of the same environment.

Given its importance inside the AI community, the planning problem is a long-

studied and researched topic. That is why, we will not provide a comprehensive

introduction of this field addressing the interested readers to the book of Russell

and Norvig [2010, chapters 10 and 11] for a much more complete and elegant

description of automated planning.
1From the ancient Greek term ‘episteme’ (ἐπιστήμη) that means ‘knowledge’.
2From the ancient Greek term ‘doxasía’ (δοξασία) that means ‘belief, opinion’.

1. Introduction & Preliminaries 5

1.2.1 Basic Concepts

In what follows we will introduce the basic terminology and concepts, related to

the planning environment, that will be essential to present the contributions of this

thesis. The well-known Block World domain, presented in Planning Domain 1.1, will

be used as a running example to better explain the concepts introduced throughout

this section. In particular, this domain will be used to describe the key features

of planning.

Planning Domain 1.1: Block World

The Block World, due to its simplicity, is one of the most employed domains
when it comes to explaining the basics of planning. This domain consists of a
few simple elements:

• blocks of the same size that can be placed either: on the table, or on top
of another block; and

• a mechanical arm that can move the blocks and can determine whether
it is holding a block or not.

Moreover, there are some constraints that regulate the Block World:

• the mechanical arm can only hold, and therefore move, one block at the
same time; and

• a block can only be placed on top of a clear block—a block with no
blocks on top of it and that is not held by the mechanical arm—or on
the table.

In what follows, we will provide a series of definitions, each followed by an example

based on the Block World domain, to formalize the ideas of state, agent, action,

planning problem, transition function, and solution in planning.

The first fundamental concept that we need to introduce is the idea of planning

state. This concept, formally introduced in Definition 1.1, is used to define a static

“picture” of the environment expressing its properties thanks to fluent literals—

Boolean propositional variables that can change their truth value over time—that

represent different aspects of the state itself.

6 1.2. Planning: Notation and Concepts

Figure 1.1: The World Block domain.

Definition 1.1: Planning State

A state of the domain is a configuration of the environment described by the
domain, referred to as world, represented as a conjunction of ground fluent
literals.

Example 1.1: Planning State Figure 1.1 represents a state in the Block
World domain. This state is defined by the following positive fluent literals:
{onTable_A, onTable_C, onC_B, Clear_Arm}. In this description and in
what follows, the negative fluent literals, e.g., ¬onTable_B or ¬onA_C, might
be omitted for the sake of readability.

Next, let us introduce the idea of agent. Intuitively, an agent is an entity that

acts upon the domain interacting with its elements and/or with other agents

to achieve her/his goal.

Definition 1.2: Planning Agent [McNeill and Bundy, 2010]

An agent is an entity that responds to goals through forming plans to achieve
them and then, possibly, enacts these plans through interacting with the
domain.

Example 1.2: Agent In the Block World domain an agent is the (simulated)
mechanical arm that moves the blocks to find the desired configuration.

After defining the idea of agents as entities that change the states trying

to reach the goal executing some actions, we need to formalize the concept of

planning action. Let us note that execution in a software environment is just

a simulation of the actions.

1. Introduction & Preliminaries 7

Definition 1.3: Action

An action in planning is an operation, made by some agent, that changes the
actual world or its perception. Actions can have executability conditions that
express when an action is, as the name suggests, executable and when it is not.

Example 1.3: Action Given the state in Figure 1.1 we can give an example
of executable and not-executable actions.

• An executable action is take(B). This action states that the mechanical
arm takes block B and keeps it. The executability conditions of this action
are {ClearArm, ¬onB_A, ¬onB_C} which are respected in the current
state. These conditions read as “The action take(B) is executable if:
(i) the mechanical arm is not holding any block; (ii) block A is not on
top of block B; and (iii) block C is not on top of block B.”

• An example of not-executable action is take(C), which demands to
mechanical arm to take block C. This action is not executable because
block C is not clear. More formally, the executability conditions of
this action are {ClearArm, ¬onC_A, ¬onC_B} and, since ¬onC_B is not
respected, the action cannot be executed.

The planning problem (Definition 1.4) formally describes (i) the scenario in which

n ≥ 1 agents act upon; (ii) the starting point; and (iii) the desired configuration. The

combination of these descriptions, alongside the formalization of how an action affects

the world (Definition 1.5), is what allows the agents to find the plan (Definition 1.6).

8 1.2. Planning: Notation and Concepts

Figure 1.2: The Planning Problem in the World Block domain.

Definition 1.4: Planning Problem

A planning problem is a tuple ⟨D, I,G⟩ where:

• D is an action domain expressed in some language: i.e., D describes the
properties of interest of the environment in which the agents are acting
upon and also specifies how the agents themselves can manipulate these
properties through actions;

• I is a set of states of the domain—called Initial state—that describes
the diverse (possible) starting configurations of the world. The example
in Figure 1.2, comprised of single state, is described as: {onTable_A,
onTable_C, holding_B, ¬ClearArm, ¬onA_B, ¬onA_C, ¬onB_A, ¬onB_C,
¬onC_A, ¬onC_B, ¬holding_A, ¬holding_C}.

• G is a set of states of the domain—called Goal state—that describes the
desired configurations of the domain. The example in Figure 1.2, once
again composed of a single state, is described as: {onTable_A, onA_B,
onB_C, ClearArm}.

Before introducing the concept of transition function let us note that since the

action execution may be non-deterministic, and therefore contemplates multiple

states where only one should be intuitively created, we must consider the update

to be capable of handling sets of states. These sets intuitively represent all the

possible states that can be reached considering the various non-deterministic effects.

The special case where all the actions are deterministic simply considers these

sets to be singletons.

1. Introduction & Preliminaries 9

Definition 1.5: Transition Function

A transition function Φ is a function that, given a starting state and an action,
returns a set of states in which the world can be after the execution of the
action in the starting state. More formally, Φ : 2Σ×A→ 2Σ where: Σ is the set
of all the possible states and A the set of all the possible actions in the domain.
If an action a is not executable in a state s ∈ Σ then we will have Φ(a, s) = ∅.
Finally, we consider Φ : Σ× A→ Σ when the actions are constrained to have
deterministic effects.

Definition 1.6: Plan/Solution

A plan/solution for the generic planning problem ⟨D, I,G⟩ is a sequence of
actions ∈ D that, when executed, transforms the the given initial state I into
one of the desired configurations ∈ G.

Once again, assuming the actions to be constrained to have deterministic
effects, a plan/solution is a sequence of actions [a1, . . . , an] such that:

• a1 is executable in every state s belonging to I,

• ai is executable in every state s belonging to ΦD(ai−1, . . . ,ΦD(a1, I)) for
i = 2, . . . , n

• G is true in every state s belonging to ΦD(an, . . . ,ΦD(a1, I)).

Even if the presented terminology is shared across the whole planning community,

as already mentioned, the research in planning is differentiated into several categories.

A brief explanation of all the planning problem types, that are relevant to this

thesis (except for epistemic planning that will have a section on its own, i.e.,

Section 1.3), will be presented next.

1.2.2 Planning Problem Categories
Classical Planning

The idea of classical planning has been present since the birth of AI and it has

been widely explored in the computer science community ever since. That is why,

we believe that introducing this concept with an already existing description, that

has been thought by far more experienced researchers, would be most appropriate.

In particular, the brief yet elegant description written by Bolander and Andersen

10 1.2. Planning: Notation and Concepts

does an excellent job in explaining what classical planning is: “For most of its

early life in the ’60s and ’70s, the field of automated planning was concerned with

ways in which the problem of creating long-term plans for achieving goals could be

formulated, such that solving problems of non-trivial size, would be computationally

feasible. The type of planning that arose from this early work, is what is known

today as Classical Planning”.

The success of classical planning is partially due to the several restrictions

imposed on the world description—i.e., the domain has to be (i) static; (ii) deter-

ministic; and (iii) fully observable [Ghallab et al., 2004]—that make this kind of

problems more tractable and approachable. In particular, (i) a static problem is

represented by a domain that is not modified by elements that are external to the

domain itself. (ii) A domain is deterministic when, for each state s and action a,

the transition function Φ(a, s) has at most one element—i.e., there is no ambiguity

in which state will be the world after the execution of the action. Determinism also

implies that the plan will be in one, and only one, state at each and every step of

the planning computation. (iii) Fully observable means that an agent knows the

complete description of the world, that is, she/he knows the state of every fluent

literal in the domain. Moreover, to maintain its simplicity the classical planning

domains are, most of the time, single-agent—i.e., domains where only one agent

can perform the actions and has to reach the goal.

A good example of classical planning can be, once again, the World Block

domain described in Planning Domain 1.1. Here the single agent—namely, the

mechanical arm—knows everything about the world (if a block or itself is clear or

not, for example), and every action has only one possible outcome.

Several automated tools to solve classical planning problems, known as planners

or solvers (Definition 1.7), have been developed for both “scientific” and industrial

purposes. These tools [Richter and Westphal, 2010, Lipovetzky and Geffner, 2014,

2017], that improve each year in terms of performance and accuracy, are the

foundation of all the instruments developed by the planning community.

1. Introduction & Preliminaries 11

Figure 1.3: A planning tree for the World Block domain.

Definition 1.7: Planner/Solver

A planner (or solver) is a program that computes the solution of any given
planning problem within a compatible domain.

During the years, to improve the performances of the various planners, different

ways of representing the so-called search-space—an abstract representation of the

paths to reachable states in a domain—have been developed. The most common

and used one is referred to as tree and it is shown in Figure 1.3. Along with the

study of how to represent the search space the planning community also studies

ways to explore these spaces defining different strategies that allow the planning

process to find the right balance between resources consumption and accuracy.

Classical planning is often seen as the basic form of all the other kinds of

planning that, usually, consider more intricate problems or allow for a less strict

description of the world. Moreover, since classical planning problems consider

more constrained environments with respect to other types of planning problems,

the existing solvers are the most efficient. In fact, it is not unusual to reduce,

when possible, problems from more complex domains to the classical one—i.e.,

12 1.2. Planning: Notation and Concepts

to elaborate the problem itself so it can be solved by a classical planner—even if

sometimes reducing a domain may cause loss of expressiveness.

Conformant/Contingent Planning

Unfortunately, most of the real-world problems that we want to solve with planning

methods do not comply with the restrictions posed by classical planners. In

particular, agents may not have complete information about some properties of

the world, meaning that they may not be able to retrieve the missing information

until the actual execution of the plan. This type of domain is known as conformant

planning. This “ignorance” leads to a substantial difference, with respect to classical

planning, when it comes to the transition function Φ. While in classical planning

applying an action produces one and only one successor, in conformant planning

Φ produces a set of possible successor states. The most notable consequence is

that—given that the solution for a problem must be true in all the reachable

states (Definition 1.6)—the plan must be valid for all the possible configurations

of the initial state.

In conformant planning the uncertainty derives from the initial state and is

carried on by the actions. This means that the actions do not generate non-

determinism themselves, for example through if-else conditions, but inherit the

uncertainty from the state on which they are executed generating multiple outcomes.

On the other hand, when actions do generate non-determinism we talk about

contingent planning. To better explain this difference we will use two different

descriptions of the same domain, the well-known Vacuum-Cleaner, introduced in

Russell and Norvig [2010, chapter 2].

Planning Domain 1.2: Vacuum-Cleaner

In this domain (represented in Figure 1.4) an agent, the vacuum-cleaner, has to
clean two rooms from the dirt using a sequence made from four actions Left,
Right, Clean, NoOperation that do what their names suggest (described in
detail in Russell and Norvig [2010, chapter 2]).

1. Introduction & Preliminaries 13

Figure 1.4: The Vacuum-Cleaner domain with both dirty rooms.

To differentiate conformant and contingent planning let us define two slightly

different versions of the domain presented in Planning Domain 1.2.

The first one, used for the example of conformant planning, uses the normal

interpretation of the actions but we assume that the vacuum-cleaner cannot perceive

whether the rooms are dirty or clean. This implies that all the states where the

agent is in the left room (accordingly to Figure 1.4) are possible initial states

and the successor states of the action Clean are shown in Figure 1.5. A solution

for this problem is ⟨Clean, Right, Clean⟩; this sequence of actions reaches the

goal from every possible initial state.

On the other hand, the variation devised to present contingent planning uses

a modification of the action Clean. In particular, whenever this action is applied

to a room with dirt in it, the vacuum-cleaner effectively cleans the room but,

sometimes, cleans the other room too. On the other hand, when the same action

is applied to a clean room it sometimes deposits dirt on the carpet. A plan for

the initial state, as described in Figure 1.4, is described by the AND-OR tree in

Figure 1.6—a special data structure that is used to express the search-space in

contingent planning. Without going into detail, we can see that the action Clean

forms the so-called OR nodes (the ones with exiting arrows connected by an edge)

that intuitively capture the idea of non-determinism.

14 1.2. Planning: Notation and Concepts

Figure 1.5: The execution of the action Clean in a conformant domain.

Figure 1.6: AND-OR tree for the Vacuum-Cleaner domain with non-deterministic
actions. In red highlighted the solution ⟨Clean, Right, Clean⟩.

Multi-Agent Planning

Real-world scenarios, often, require more than a single agent that can act upon

the domain. This family of planning problems that considers multiple entities is

called multi-agents planning and it is used to model all those domains where agents’

interactions are fundamental. Even if more agents acting in the same domain

can, initially, seem a more efficient way to solve problems—for example, when we

envision multi-agent as a means of parallelization—in reality, most of the time,

having multiple entities increases the inherent complexity of the solving process.

The family of multi-agent problems engulfs several configurations of domains

1. Introduction & Preliminaries 15

that demand multiple acting entities. Next, we will list briefly some of the most

known and studied configurations in the literature to provide the reader with an

idea of the type of problems tackled by the multi-agent community.

The first way of classifying planning problems derives from the agents-goal

relations. A basic subdivision is given by Bowling et al. [2005]:

• Not-deterministic: Each agent doesn’t know which action, nor when, the other

agents will perform. This implies that agents cannot accurately predict in

which state the world will be in the future.

• Cooperative: The agents try to cooperate to reach the same goal (Planning

Domain 1.3).

• Adversary: Under this specification, we find the most known multi-agent

scenarios; i.e., competitive games. Agents might have, in fact, opposite goals

and try to reach theirs penalizing the others.

• Overlapping Goals: The agents just happen, without willing it, to help each

other to reach their own goal.

Another distinction is based on the type of communications between agents.

We can simplify the subdivision described by Fornara [2003], Katewa [2017] in

two different categories of communication:

• Free: The agents are allowed to freely share their knowledge about the world

(Planning Domain 1.3).

• Privacy limited: Agents can share only certain information with others. It is

also possible that some agents get to share specific types of information with

only a subset of the other agents.

Finally, another distinction, based on the solving process, is introduced by De Weerdt

and Clement [2009] and Fornara [2003]. A planning system can therefore be:

• Centralized: A master agent coordinates the action of the others.

• Decentralized: Each agent acts independently (Planning Domain 1.3).

16 1.3. Reasoning about Knowledge and Beliefs

Figure 1.7: The Soccer domain.

Planning Domain 1.3: Soccer

An example of a decentralized multi-agent planning domain with cooperative
agents and without restrictions about sharing information is a variation of the
Soccer domain presented by Littman [1994].

In this game, each agent is placed in a single cell of the grid (Figure 1.7)
and can move following the compass directions (N, S, E, and W) or wait. Agent
A starts conventionally with the ball but whenever an agent tries to move
in an already occupied cell she/he has to “pass” the ball to the agent that
occupies that cell. The goal of this domain is to bring the ball inside the goal
zone (green in Figure 1.7) without hitting the obstacles (red in Figure 1.7) in
the fastest way possible.

1.3 Reasoning about Knowledge and Beliefs

Logicians have always been interested in describing the state of the world through

formalism that would allow reasoning on the world with logic. This interest has

led, among other things, to the formalization of the aforementioned planning

problem and the introduction of several modal logics [Smullyan, 1968, Chagrov

and Zakharyaschev, 1997, Van Ditmarsch et al., 2007] used to describe different

types of scenarios. The difference between these logics is not merely syntactical,

rather it carries implications in both expressiveness and complexity. Let us take for

example, without going into details, the Boolean propositional logic and the linear

temporal logic (LTL). The first one, being one of the simplest logic, is mostly used

to encode the world as a set of facts that can be true or not and, therefore, allows

to “reduce” properties of the domain to Boolean formulae. The latter instead, even

if it is based on propositional logic, introduces modal operators that allow reasoning

1. Introduction & Preliminaries 17

about time (with a little abuse of the term). The absence of these operators in the

first one makes propositional logic, adopted to represent problems in the complexity

class NP such as SAT, not expressive enough to encode problems that LTL can

deal with. So, in general, we have that different logics have diverse operators and

therefore are suitable for different kinds of automated reasoning.

Nevertheless, even if different, the two logics introduced above are limited to

reason only on the state of the world—i.e., on its “physical” properties and their

changes—and since this thesis aims to tackle the planning problem while considering

the beliefs of the agents, it is clear that neither propositional logic nor LTL suffice

to formalize the domains that we want to explore. Epistemic Logic, on the other

hand, is used to reason not only on the state of the world but also on the agents’

knowledge about the world or the others’ knowledge. Similarly, the logic that

addresses the problem of reasoning on the agents’ beliefs—on both the physical

world and on the others’ beliefs—is referred to as Doxastic Logic [Meyer, 2003].

The idea behind epistemic and doxastic logic is, therefore, to have a formalization

that allows to reason on domains where, not only the state world is taken into

consideration, but also the knowledge/beliefs that the agents have about the world

and about the knowledge/beliefs of each other are considered. That is why we

used these logics as the foundation for our research.

In what follows we will briefly describe the fundamental concepts that are shared

between epistemic and doxastic logic. This introduction is not to be intended as a

complete survey of the vast area of epistemic and doxastic logic but, rather, as a

way of presenting concepts that are paramount to illustrate the contributions of this

thesis. During this work, for the sake of readability, we will make several (intuitive)

assumptions to avoid the need to investigate “mind-twisting” aspects of epistemology

that would complicate the design of autonomous agents—e.g., we assume that the

agents are perfect logicians. For a far more complete, compelling and informative

introduction on this topic we refer the reader to Fagin et al. [1995], Van Ditmarsch

et al. [2007], van Ditmarsch et al. [2015], Rendsvig and Symons [2021].

18 1.3. Reasoning about Knowledge and Beliefs

For the sake of readability let us identify both epistemic and doxastic logic

with the term “epistemic logic” when there is no need to differentiate between

them (differences in reasoning on knowledge or beliefs will be further explored

later in this section). Moreover, for brevity, we will make use of the term “belief”

to encapsulate both the notions of an agent’s knowledge and beliefs about some

information when the context permits it.

1.3.1 Epistemic Logic

Epistemology is the field of study that is concerned about knowledge and beliefs.

Since its early days, Philosophy has always been intertwined with the concepts of

knowledge and beliefs given that they play a central role in the development of

cognitive theories as well as in the understanding of the human reasoning processes.

While Aristotle is considered, among other things, to have initiated the discussion

on epistemology [Rendsvig and Symons, 2021], the first logic formalization of this

field is attributed to Ralph Strode, in 1387 [Boh, 1993]. This formalization, refined

over the years, is what led modern philosophers in the fifties and sixties to define

a complete axiomatization of the logic of knowledge and beliefs that resulted, in

1962, in the book “Knowledge and Belief: An Introduction to the Logic of the

Two Notions” by Hintikka [1962].

While this formalization stems from the area of Philosophy, its application—i.e.,

formally representing knowledge and/or beliefs—rapidly captured the interest of

researchers of diverse areas. Notably, in the 1990s the computer science community

started to embrace the idea of “reasoning about knowledge” and devised several

ways to employ epistemic logic to model scenarios where autonomous agents could

analyze knowledge/belief relations to, for example, better assess winning strategies.

In particular, this thesis explores the interplay between (dynamic) epistemic logic

and the field of planning—the so-called Multi-agent Epistemic Planning problem—

inheriting its research scope from one of the most important works on this topic,

i.e. “Reasoning About Knowledge” by Fagin et al. [1995].

1. Introduction & Preliminaries 19

Let us now introduce epistemic logic, namely the logic that allows to reason

on the agents’ knowledge/beliefs in static domains. In what follows we will make

use of a simple instance of the Coin in the Box domain as a running example to

present the main concepts of epistemic logic.

Planning Domain 1.4: Coin in the Box (Simplified)

Three agents, A, B, and C, are in a room where in the middle there is a box.
The box has a lock that can only be opened with a key. Inside the box, there
is a coin that lies heads up. In the initial configuration of this domain we have
that everybody knows that:

• none of the agents know whether the coin lies heads (identified by heads)
or tails (identified by the negation of heads, i.e., ¬heads) up;

• the box is locked (identified by the negation of opened, i.e., ¬opened);
and

• only agent A has the key (identified by haskey_A and ¬haskey_B,
¬haskey_C).

In Planning Domain 1.4 we are presenting an example of an automated planning

environment, and therefore, we should also specify the possible actions and the

desired goals. Nevertheless, since we will use this example to better explain concepts

of epistemic logic (which refers to static domains), for the moment we will not add

any other specification to avoid unnecessary clutter. The ideas of action, transition

function, and plan are, in fact, directly derived by the interaction between the

field of planning and Dynamic Epistemic Logic. Since this combination is of great

interest for our work, it will be the subject of a dedicated section, i.e., Section 1.4.

Epistemic Logic Terminology

Let us consider a set AG of n ≥ 1 agents and let F be a set of m ≥ 1 propositional

variables, i.e., the fluent literals. With the term epistemic world, or simply world

(Definition 1.8), we identify a subset of elements of F—intuitively, only those that

are true in that world. This means that a world describes a certain configuration

of the environment identifying which properties hold (and, consequently, which

do not). Furthermore, we use the term pointed world or real world to identify

20 1.3. Reasoning about Knowledge and Beliefs

the set of fluent literals that represents the actual configuration of the domain

we are reasoning on.

Definition 1.8: Epistemic World

An epistemic world w is a set of propositional variables of F (w ⊆ F) which
are interpreted as true in w (∀f ∈ w, f |=w ⊤; where ⊤ indicates true). The
remaining elements of F , i.e., the ones that are not in w, are considered to be
false in w (∀f ∈ F \ w, f |=w ⊥; where ⊥ indicates false).

Example 1.4: Epistemic World The description of the real world of
Planning Domain 1.4 is expressed by the following set of true fluent literals:
{heads, haskey_A}. The remaining fluent literals, i.e., opened, haskey_B,
and haskey_C are considered false.

During this thesis, we will, sometimes, make use of the more “complete”
representation that explicitly presents both positive and negative (preceded by
the symbol ¬) fluents to strengthen the clarity of the presentation. Following
this schema, the world taken into consideration would be represented as {heads,
haskey_A, ¬opened, ¬haskey_B, ¬haskey_C}.

In epistemic logic, as already said, we are not only concerned with the en-

vironment properties and that is why each agent i ∈ AG is associated with an

epistemic modal operator Bi. This operator, intuitively, represents the beliefs of the

agent i. While the operator Bi captures the direct beliefs of i, we also consider the

group operator Cα. Cα represents the common beliefs of a group of agents α ⊆ AG,

i.e., every agent in α believes a fact and believes that the others believe it too.

The operators Bi and Cα allow to “enrich” the traditional definition of a fluent

formula (Definition 1.9) and obtain the concept of belief formula (Definition 1.10).

Several other operators, not considered by this thesis, that delineate far more

complex beliefs relations—e.g., the Only Knowing operator presented by Gerhard

and Hector J. [2015]—have been devised.

1. Introduction & Preliminaries 21

Definition 1.9: Fluent Formula [Baral et al., 2015]

A fluent formula is a propositional formula built using the propositional
variables in F and the traditional propositional operators ∧,∨,⇒,¬. A fluent
atom is a formula composed of just an element f ∈ F , instead a fluent literal is
either a fluent atom f ∈ F or its negation ¬f. During this work, we will refer
to fluent literals simply as fluents.

Definition 1.10: Belief Formula [Baral et al., 2015]

A belief formula is defined as follow:

• A fluent formula (Definition 1.9) is a belief formula;

• let φ be belief formula and i ∈ AG, then Bi(φ) is a belief formula;

• let φ1, φ2, and φ3 be belief formulae, then ¬φ3 and φ1 ∧ φ2 are belief
formulae (the connective ∨ is derived as a combination of ¬ and ∧);

• the formulae of the form Cαφ are belief formulae, where φ is itself a
belief formula and ∅ ̸= α ⊆ AG.

The language LC
AG of well-formed belief formulae with common belief, over the sets

F and AG, can be defined compactly way by:

φ ::= f | ¬φ | φ ∧ φ | Bi(φ) | Cα(φ),

where f ∈ F , i ∈ AG and ∅ ̸= α ⊆ AG. We read the formula Bi(φ) as “agent

i believes that φ” and Cα(φ) as “it is common belief between the agents in α

that φ”. In what follows, we will simply talk about “formulae” instead of “belief

formulae”, whenever there is no risk of confusion.

Example 1.5: Belief Formulae Considering Planning Domain 1.4, we can
express “agent B believes that agent A has the key” with BB(BA(haskey_A))
and “it is common belief (between all the agents) that the box is closed” with
C{A,B,C}(¬opened).

Finally, from the ideas of “world” and agents’ beliefs, we can informally define

a state in epistemic logic, i.e., an e-state.

22 1.3. Reasoning about Knowledge and Beliefs

Definition 1.11: Epistemic State (e-State)

An epistemic state is a collection of epistemic worlds believed to be possible by
some agent in the domain. Moreover, an epistemic state captures the agents’
beliefs about both the “physical properties” and others’ beliefs.

Example 1.6: Epistemic State (e-State) The e-state that encapsulates
Planning Domain 1.4, is made of two worlds. The first, the pointed one, is
the one expressed in Example 1.4 and is described as: {heads, haskey_A},
while the latter is identified by {haskey_A}. These two worlds are considered
possible by all the agents (A, B, and C) as they are not able to distinguish
between the case in which the coin is heads or tails up. Nonetheless, no world
that contains opened is found in the e-state as this property is known to be
false by all the agents.

Let us note that Definition 1.11 does not clearly state how the agents’ beliefs are

represented. To do so we will need a much more formal definition of e-state that

will be provided in the next paragraph.

Epistemic Logic Semantic

In the previous paragraph, we introduced the main concepts that are involved in

epistemic logic, providing for them loose and intuitive meanings. Nevertheless, if we

want to adopt these notions to define autonomous reasoners we must provide formal

semantics for the proposed language, supporting the ideas introduced above. In

particular, in this chapter we will explore the Kripke structures [Kripke, 1963], a data

structure widely used in literature (for instance in Fagin et al. [1995], Van Ditmarsch

et al. [2007], Baral et al. [2022]) to model the semantics of epistemic logic. These

structures will allow us to provide a formal meaning for: the aforementioned idea

of “world”; the concept of epistemic state (e-state); and for the entailment of

belief formulae.

1. Introduction & Preliminaries 23

Definition 1.12: Kripke Structure [Kripke, 1963]

A Kripke structure (Figure 1.8) is a tuple ⟨W, π,B1,. . . ,Bn⟩, where:

• W is a set of worlds,

• π : W ↦→ 2F is a function that associates an interpretation of a set of
propositional variables F to each element of W,

• Bi ⊆ W ×W, for i = 1, . . . , n, is a binary relation over W.

Let us observe how Definition 1.12 deals with the terminology introduced in the

previous paragraphs. In fact, we have that each element of W, thanks to its

interpretation (described by π), identifies what we defined above as an “epistemic

world”, i.e., a configuration of the environment. As mentioned above, each e-world

contains only the positive propositional variables, and this is true also in the worlds

of a Kripke structure. For example, the e-world presented in Example 1.4, let

us call it w, is identified in both cases by w = {heads, haskey_A} (represented

by the left circle in Figure 1.8).

From now on whenever we consider Kripke structures we will be referring to

a small variation of the structures: the pointed Kripke structures (Definition 1.13)

that simply add an entry point. This entry point represents what we previously

called the pointed/real world—the actual configuration of the environment on

which we are planning.

Definition 1.13: Pointed Kripke Structure

A Pointed Kripke structure is a pair (M,w) where M = ⟨W, π,B1, . . . ,Bn⟩ is a
Kripke structure and w ∈ W. In a pointed Kripke structure (M,w), we refer to
w as the pointed (or real) world (represented by the bold circle in Figure 1.8).

For the sake of readability, we will make use of M [W], M [π], M [i] and M [B] to

denote the components W, π,Bi and B = {M [Bi] | 1 ≤ i ≤ n} of M , respectively.

We write M [π](w) to denote the interpretation associated to the world w via π

and M [π](w)(ϕ) to denote the truth value of a fluent formula ϕ with respect to

the interpretation M [π](w). Moreover, we will often refer to a Kripke structure

24 1.3. Reasoning about Knowledge and Beliefs

haskey_A
heads

haskey_A{A, B, C}{A, B, C} {A, B, C}

Figure 1.8: The Kripke structure that represents Planning Domain 1.4.

as a directed labeled graph, whose set of nodes is M [W] and whose set of edges

contains (w1, i,w2)3 if and only if (w1,w2) ∈ Bi. (w1, i,w2) is referred to as an edge

coming out of (resp. into) the world w1 (resp. w2).

Intuitively, a Kripke structure describes the possible worlds envisioned by the

agents where the presence of multiple worlds identifies uncertainty. The relation

(w1,w2) ∈ Bi denotes that the beliefs of agent i about the characteristics of

the domain are insufficient for her/him to distinguish between the configuration

described by w1 and the one described by w2. This can be seen in Figure 1.8 where the

two worlds are reachable from one to another by all the agents, meaning that agents A,

B, and C are not able to distinguish between the worlds where the coin is heads or tails

up. This results in agents’ ignorance and we can say that A (and, similarly, B and C)

does not know the coin position (¬BA(heads)∧¬BA(¬heads)). On the other hand,

since from the pointed world agent A (and, similarly, B and C) only reaches worlds

where haskey_A is true we can say that A believes haskey_A (BA(haskey_A)).

Following the informal Definition 1.11, it is clear that the information contained

in a Kripke structure suffices to represent an “e-state”. In particular, the set of

the possible worlds is captured by M [W] and the agents’ beliefs can be derived by

exploring the worlds’ accessibility relations (starting from the real world).

More formally, in Definition 1.14, following Baral et al. [2015], we present how we

can derive the truth value of belief formulae from an epistemic state representation,

i.e., a pointed Kripke structure. This definition allows us to provide semantics for
3(w1, i, w2) denotes the edge from node w1 to node w2, labeled with i.

1. Introduction & Preliminaries 25

the epistemic modal operators Bi and Cα, where i ∈ AG ⊇ α. To better express

the semantics of the operator Cα we will make use of an additional operator Eα.

While Eα does not add any expressiveness to the language it allows us to express

the idea of common belief more elegantly. In fact, iterating on Ek
αφ easily encodes

the intuitive meaning of Cα(φ); that is the conjunction of the following belief

formulae: (i) every agent in α knows φ; (ii) every agent in α knows that every

agent in α knows φ; (iii) and so on ad infinitum.

Definition 1.14: Entailment w.r.t. a Kripke structure

Given, a fluent f, the belief formulae φ, φ1, φ2, an agent i, a group of agents α,
and a pointed Kripke structure (M = ⟨W, π,B1, . . . ,Bn⟩, w):

• (M,w) |= f if f ∈ π(w) (or, alternatively, f |=π(w) ⊤);

• (M,w) |= φ if φ is a fluent formula and π(w) |= φ following the usual
semantics of ¬ and ∧;

• (M,w) |= Bi(φ) if for each t such that (w, t) ∈ Bi it holds that (M, t) |= φ;

• (M,w) |= ¬φ if (M,w) ̸|= φ;

• (M,w) |= φ1 ∧ φ2 if (M,w) |= φ1 and (M,w) |= φ2; and

• (M,w) |= Eαφ if (M,w) |= Bi(φ) for all i ∈ α;

• (M,w) |= Cαφ if (M,w) |= Ek
αφ for every k ≥ 0, where E0

αφ = φ and
Ek+1

α φ = Eα(Ek
αφ).

Axioms Systems

Following the works by Hintikka [1962], Fagin et al. [1995] let us now “quickly”

define an axioms system for LC
AG—i.e., the language of well-formed formulae over

F and AG. Such axiomatization will allow us to better categorize the properties

of the language in relation to the structural constraints that an epistemic state

representation, e.g., a Kripke structure, must respect. In particular, we will provide

the description of some properties, or axioms, on the e-states’ relations—i.e., the

B1, . . . , Bn components of a pointed Kripke structure—or, more simply, its edges.

These axioms, when respected, assure that the fundamental concepts of what we

call knowledge and beliefs are preserved. To better understand what we are referring

26 1.3. Reasoning about Knowledge and Beliefs

Axiom Property of B
T Biφ⇒ φ
4 Biφ⇒ BiBiφ
5 ¬Biφ⇒ Bi¬Biφ
D ¬Bi⊥
K (Biφ ∧ Bi(φ⇒ ψ))⇒ Biψ

Table 1.1: Knowledge and beliefs axioms [Fagin et al., 1995, chapter 3].

to, let us provide both the name and the formal definition of these axioms (the

Left and Right column of Table 1.1, respectively).

Now we will give a brief description of the five axioms that we introduced in

Table 1.1. More details on the axioms and their properties can be found in the

work by Fagin et al. [1995, chapter 3].

• T: Has been introduced to capture the difference between knowledge and belief.

When this axiom holds the real world must reflect the agents’ knowledge,

otherwise the agents might believe something that is not true in the actual

configuration of the environment.

• 4: Models the concept of positive introspection; this means that an agent

must be aware of her/his beliefs.

• 5: Models the concept of negative introspection; similarly to 4 an agent must

be aware of what she/he does not believe.

• D: Introduced to ensure that an agent cannot believe “False”.

• K: Expresses that the agent’s beliefs are closed under logical consequence.

From now on, with KD45n-state we will indicate e-states that consider n agents

and respect the axioms 4, 5, D, and K. Similarly we will refer to the e-states on n

agents that respect all the aforementioned axioms (T, 4, 5, D, and K) as S5n-state.

1. Introduction & Preliminaries 27

Knowledge or Belief

As pointed out in the previous paragraphs the modal operator Bi represents M [i]—

the world relations in a Kripke structure—and, as expected, different relations’

properties imply different meanings for Bi. In particular, in our work, we are

interested in representing the knowledge or the beliefs of the agents. The problem

of formalizing these two concepts has been studied in depth bringing to an accepted

formalization for both [Fagin et al., 1995]. If a relation4 respects all the axioms

presented in Table 1.1 it is called an S5 relation and encodes the concept of

knowledge, while when it respects all the axioms but T characterizes the concept

of belief. That is, when reasoning about knowledge we must guarantee that the

underlying representation is an S5n-state, while when we consider beliefs we need

a KD45n-state. Following these characterizations, we will refer to knowledge and

belief as S5 and KD45 logic, respectively.

Intuitively, the difference between the two logics is that an agent cannot know

something that is not true in S5 but she/he can believe it in KD45. While this

difference may seem superficial, designing a planning system that deals with beliefs

instead of knowledge requires much more attention and increases the difficulty

of the solving process. In fact, a planner that reasons about knowledge can rely

on a very important property that a solver that deals with beliefs cannot exploit.

That is, a planning process based on knowledge can safely assume that the agents’

information is always correct. In other words, once any agent knows a property

she/he will maintain her/his knowledge even if the property changes its truth value.

Moreover—since agents have to know the true nature of the information that they

have—agents can also exploit the T axiom to reason about others’ knowledge;

e.g., if an agent i knows that another agent j knows a property p, then i knows p.

Furthermore, these properties, combined with the most commonly used epistemic

actions (introduced in the next section), ensure that the agents’ information increase

monotonically. This implies that, when an agent learns something, that something

can never be “unlearned” by that agent.
4In our case the relation between the worlds of a Kripke structure.

28 1.4. Multi-agent Epistemic Planning

Contrarily, when we “drop” the T axiom, all of these assumptions do not hold

anymore. This means that, when planning with beliefs, the solving process must

account for the possibility that agents may:

• believe something that is not true in the real world;

• not being aware of changes about the truth value of already believed properties;

• believe something different from other agents;

• become ignorant about certain properties;

• announce/perceive something that does not correspond to the reality; and

• derive chains of beliefs of arbitrary length that cannot be collapsed into the

same information.

All of these points make a planning system that takes into consideration beliefs, more

intricate than one that is based on the S5 logic. Nevertheless, planning on KD45

presents the opportunity to model much more realistic (and interesting) scenarios

and that is why, in this thesis, we tackle the problem of planning on beliefs.

1.4 Multi-agent Epistemic Planning

As already mentioned, reasoning about actions and information has always been

one of the prominent interests since the beginning of AI [Russell and Norvig,

2010]. In particular, the continuous research effort that has characterized the

field of autonomous planning is what ensured its rapid evolution. The “simple”

task of reasoning in the classical planning environments rapidly evolved into more

complex problems [Torreño et al., 2014]. This evolution, dictated both by research

interests and real-world needs, developed interesting families of problems that vary

in multiple aspects such as: (i) the number of agents; (ii) the determinism of the

actions; (iii) the agent’s communication policies; etc.

In particular, in this thesis, we are interested in the combination of the planning

field and epistemic logic. While both of these research areas have been studied and

1. Introduction & Preliminaries 29

formalized since the early sixties, their combination, i.e., Multi-agent Epistemic

Planning (MEP), is a somewhat recent introduction in the Artificial Intelligence

community [Van Ditmarsch et al., 2007]. Epistemic planners, differently from most

of the other solvers, are not only interested in the state of the world but also in the

knowledge or beliefs of the agents. This could also be viewed, as said by Gerbrandy

[1999], as “the process of reasoning on the information itself ”. It is easy to see

that an efficient autonomous reasoner that could exploit both the knowledge on

the world and about other agents’ information could provide an important tool

in several scenarios, e.g., economy, security, justice, or politics.

Nevertheless, reasoning about knowledge and beliefs is not as direct as reasoning

on the “physical” state of the world. That is because expressing, for example, belief

relations between agents often implies considering nested and group beliefs that

are not easily extracted from the state description by a human reader. Even if

several studies [Van Ditmarsch et al., 2007, Wan et al., 2015, Muise et al., 2015,

Huang et al., 2017, Le et al., 2018] have been conducted on this topic, some

fundamental complications remain while characterizing MEP. In particular, the

inherent complexity of reasoning on beliefs is reflected in computational overhead

that brings, most of the time, infeasibility to the solving process. Moreover, modeling

subtle nuances of complex ideas—e.g., trust, lies, misconception, and so on—that

are necessarily present when we reason on beliefs, is a very intricate task that makes

MEP even more difficult to completely grasp. These are some of the reasons why

we deem it necessary to explore the field of Multi-agent Epistemic Planning.

1.4.1 Epistemic Actions

Before exploring what it means to plan on epistemic domains, let us briefly introduce

the idea of action in epistemic logic. As said in Moss [2015], the formalization of

various types of actions and, consequently of formal languages that incorporate

them, is what originated the field of Dynamic Epistemic Logic (DEL). While DEL

is not directly used in our thesis, the formalization provided by the works on this

area [Fagin et al., 1995, van Eijck, 2004, Van Ditmarsch et al., 2007, Moss, 2015]

30 1.4. Multi-agent Epistemic Planning

haskey_A
heads

haskey_A{B, C}{A, B, C} {A, B, C}

Figure 1.9: The Kripke structure that represents the Planning Domain 1.4 variation.

is what profoundly inspired our definition of epistemic action languages and their

transition functions (presented in Chapter 2), fundamental components of our

system. To better explain the concept of epistemic actions let use a variation of

Planning Domain 1.4, as a running example, where we assume that: (i) agent

A believes that the coin position is heads (Figure 1.9); and (ii) agents B and C

believe that A knows the coin position without knowing it themselves (Figure 1.9);

and (iii) the agents have the ability to announce publicly (i.e., to all the other

agents) some property (i.e., a fluent) of the physical world. We capture the agents’

capability with announce⟨i⟩(f), where i ∈ AG is an agent that executes the action5;

and f is the announced physical property. This action type is identified by the

term public announcement and its informal semantics is: “the announcing agent

tells everyone a property that she/he believes, making the other agents believe it

too”. This simple semantics does not consider concepts such as lying agents, or

degrees of trust. Let us note that each action description (independently from the

type) is associated with an executability condition, that is, a belief formula that

when entailed permits the action itself to be executable.

To present the public announcements formal semantics we will follow Moss [2015].

Let us note that the execution of any action implies the possible modification of the

underlying e-state. In particular, to model the semantics of a public announcement,

agents must believe whatever has been announced. To do so, following the notion of

entailment (Definition 1.14), we must ensure that no agent can reach a world where
5Distinguishing between the acting agent and the others is not necessary here, but let use this

notation to be consistent with the rest of the thesis.

1. Introduction & Preliminaries 31

haskey_A
heads

{A, B, C}

Figure 1.10: e-State of Figure 1.9 after the execution of announce⟨A⟩(heads).

the announced property is false. That is, the execution of announce⟨A⟩(heads)

on the e-state depicted in Figure 1.9, must generate an e-state that contains only

worlds that entails heads. This is accomplished by simply eliminating all the worlds

that contain the negation of heads as shown in Figure 1.10. Let us note that

the executability condition for this action is BA(heads). Following Moss [2015],

the formalization of the language that also contains the aforementioned semantics

for public announcements is as follows:

φ ::= f | ¬φ | φ ∧ φ | Bi(φ) | Cα(φ) | [!f]φ,

where f ∈ F , φ is belief formula over AG and F , i ∈ AG and ∅ ≠ α ⊆ AG. While

the epistemic operators B and C have already been formalized, the newly introduced

operator [!f]φ needs to be defined. Contrarily to Bi(φ) and Cα(φ), that operate on

a static e-state, the operator [!f]φ must take into account also the updated version

of the e-state (and that is what transforms epistemic logic into dynamic epistemic

logic). In particular, we read the operator as “if φ is respected in the current state

then, after the execution of the announcement f must be believed by every agent”6.

The axiomatization of this operator, following Moss [2015, equation 6.6], is:

(M,w) |= [!f]φ iff (M,w) ̸|= φ, or else (Mf,w) |= f.

where (Mf,w) is the epistemic state (M,w) updated after the execution of the

announcement.
6The case when an agent announces ¬f is similar.

32 1.4. Multi-agent Epistemic Planning

Public announcement is just one of the possible actions formalized in DEL. Since

we will rely on action languages (typical of planning domains), we will make use of

a formalization that is akin to the one used in the planning area. Therefore, we

will not further explore DEL, addressing the interested reader to Van Ditmarsch

et al. [2007], Moss [2015] for more examples of epistemic actions and a much more

detailed introduction on dynamic epistemic logic.

1.4.2 Multi-agent Epistemic Planning Problem

Bolander and Andersen [2011] define epistemic planning as the generation of plans

for multiple agents to achieve goals which can refer to the state of the world,

the beliefs of agents, and/or the knowledge of agents. After the introduction of

the classical planning problem, in the early days of Artificial Intelligence, several

studies have provided the foundations for several successful approaches to automated

planning. However, the main focus of these research efforts has been about reasoning

within single-agent domains. In single-agent domains, reasoning about actions and

change mainly involves reasoning about what is true in the world, what the agent

knows about the world, how the agent can manipulate the world (using world-

changing actions) to reach particular states, and how the agent (using sensing

actions) can learn unknown aspects of the world.

In multi-agent domains an agent’s action may not just change the world and

the agent’s beliefs about the world, but also may change other agents’ beliefs about

the world and their beliefs about other agents’ beliefs. Similarly, the goals of an

agent in a multi-agent world may involve manipulating the beliefs of other agents.

Although there is a large body of research on multi-agent planning Fagin et al.

[1995], Durfee [2001], Bernstein et al. [2002], Guestrin et al. [2001], De Weerdt

et al. [2003], Goldman and Zilberstein [2004], De Weerdt and Clement [2009],

Allen and Zilberstein [2009], Muise et al. [2015], Baral et al. [2015, 2022], very few

efforts address the above aspects of epistemic domains which pose several research

challenges in representing and reasoning about actions and change.

1. Introduction & Preliminaries 33

Let us now formally introduce the notion of Multi-agent Epistemic Planning

domain in the following definition.

Definition 1.15: MEP Domain

A Multi-agent Epistemic Planning domain is a tupleD = ⟨F ,AG,A, φini, φgoal⟩,
where F , AG, A are the sets of fluents, agents, actions of D, respectively; φini

and φgoal are DEL formulae that must be entailed by the initial and goal e-state,
respectively. The former e-state describes the domain’s initial configuration
while the latter encodes the desired one.

A MEP domain contains the information needed to describe a planning problem

in a multi-agent epistemic setting. Given a domain D we refer to its elements

through the parenthesis operator; e.g., the fluent set of D will be denoted by D(F).

An action instance a⟨α⟩ ∈ D(AI) = D(A) × 2D(AG) identifies the execution of

action a by a set of agents α. Multiple executors are needed in certain types

of actions, for example in the so-called sensing actions (introduced in detail in

the next chapters). On the other hand, actions like the public announcement

introduced above, only require one executor (|α| = 1). The transition function

Φ : D(AI)×D(S)→ D(S) ∪ {∅} formalizes the semantics of action instances (the

result is the empty set if the action instance is not executable). Formal definitions

of this concept will be introduced in Chapters 2 to 4 where we will analyze in detail

diverse transition functions. Intuitively, the features of Planning Domain 1.5 (the

Planning Domain 1.4 completed with actions and goal descriptions) are:

• F = {heads, haskey_X, opened} where X ∈ AG;

• AG ={A, B, C};

• A = {open, peek, announce};

• φini = heads ∧ haskey_A ∧ CAG(haskey_A) ∧ CAG(¬haskey_B) ∧

CAG(¬haskey_C) ∧ CAG(¬opened);

• φgoal = BA(heads) ∧BB(heads) ∧BC(heads);

34 1.4. Multi-agent Epistemic Planning

Planning Domain 1.5: Coin in the Box with Actions (Simplified)

Three agents, A, B, and C, are in a room where in the middle there is a box.
The box has a lock that can only be opened with a key. Inside the box, there
is a coin that lies heads up. In the initial configuration of this domain we have
that everybody knows that:

• none of the agents know whether the coin lies heads or tails up;

• the box is locked; and

• only agent A has the key.

Moreover, we have that each agent can execute one of the following actions:

• open: an agent, if she/he has the key, can open the box. This results in
all the agents believing that the box is open.

• peek: to learn whether the coin lies heads or tails up, an agent can peek
into the box, but this requires the box to be open. This will result in
the peeking agents knowing the coin position while the other agents are
aware of this without knowing the coin position themselves.

• announce: following the public announcement semantics this will result
in all the agents believing the announced coin position. As before, this
action is only executable by an agent who believes the coin position to
be heads.

Finally, the desired configuration, i.e., the goal, of this instance is that all
the agents (A, B, and C) believe that the coin is heads up, i.e., BA(heads) ∧
BB(heads) ∧BC(heads).

The correct solution (or plan) that permits the instance presented in Planning

Domain 1.5 to reach its desired goal is the sequence of action instances ⟨open⟨A⟩,

peek⟨X⟩, announce⟨X⟩(heads)⟩ where X ∈ {A, B, C}. In Figure 1.11 we present the

plan execution, representing the e-state resulting after the execution of each action.

We can see that in Figure 1.11b the execution of open⟨A⟩ modified some property

of the physical world, namely, the fluent opened became true. We will refer to this

type of action, i.e., the ones who modify some physical property, with the term

ontic or, sometimes, world-altering. Ontic actions resemble the actions that we can

find in classical planning. On the other hand, the actions that only deal with agents’

beliefs, e.g., peek and announce, are referred to as epistemic actions. We will see

1. Introduction & Preliminaries 35

haskey_A
heads

haskey_A{A, B, C}{A, B, C} {A, B, C}

(a) The initial e-state described in Planning
Domain 1.5.

opened
haskey_A
heads

opened
haskey_A

{A, B, C}{A, B, C} {A, B, C}

(b) The e-state obtained after the execution
of open⟨A⟩.

opened
haskey_A
heads

opened
haskey_A

{B, C}{A, B, C} {A, B, C}

(c) The e-state obtained after the execution of
peek⟨A⟩.

opened
haskey_A
heads

{A, B, C}

(d) The e-state obtained after the execution
of announce⟨A⟩(heads).

Figure 1.11: The execution of the plan ⟨open⟨A⟩, peek⟨A⟩, announce⟨A⟩(heads)⟩.

in Chapter 2 how these two types of actions have different transition functions.

In Figure 1.11c we assume that the executor is agent A. This means that A must

believe that the coin is heads up. To ensure this we simply remove all the edges that,

from the pointed world, allow A to reach a world where heads is not true. We leave

the edge that allows A to loop on the right world of Figure 1.11c as this is used to

capture that the other agents do not know which coin position A believes to be true.

Finally, Figure 1.11d is derived following the public announcement semantics

presented in Section 1.4.1. We can see how the final e-state (Figure 1.11d) respects

the given goal, i.e., BA(heads) ∧ BB(heads) ∧ BC(heads).

Let us remember that this paragraph is supposed to only provide an introduction

to the field of Multi-agent Epistemic Planning. We will explore more in detail these

concepts later, when we will present the contributions of this thesis.

1.4.3 Complexity Overview

Finally, as the last note on MEP, we will summarize the complexity results in the

epistemic logic and in the epistemic planning fields. We will not present details

on such results as we introduced them only to provide the reader with a general

idea on “how hard” the problem of reasoning on information change is.

36 1.4. Multi-agent Epistemic Planning

Let us start by providing some basic notions that we will use throughout this

paragraph in Definitions 1.16 to 1.18.

Definition 1.16: Satisfiability of a Formula

Given a formula φ, φ is satisfiable if it is possible to find an interpretation, in
our case an e-state, that makes the formula true.

Definition 1.17: Model Checking of a Formula

Given a formula φ and a model M (in our case an e-state), the model checking
problem consists in determining if φ is true in M .

Definition 1.18: Plan Existence Problem

The plan existence problem consists of determining, if it exists, a solution, as
defined in definition 1.6, for a planning domain D.

These definitions identify the problems of interest when planning on beliefs.

Assuming that we make use of Kripke structures—other representations have the

same results—to represent the e-states then: (i) Definition 1.16 is the problem

of verifying whether there exists or not a Kripke structure that entails a formula;

(ii) Definition 1.16 identifies the entailment of a formula over a given a Kripke

structure; and (iii) Definition 1.16 represents the complete planning process. This

means that identifying the complexity of these problems will allow us to characterize

the MEP domain and provide us with a rough idea of how intricate is to tackle this

setting. We now present a series of results that summarize the complexity of the

aforementioned problems (Proposition 1.1, Tables 1.2 and 1.3). All the presented

results are derived by Fagin et al. [1995], Bolander et al. [2015].

Proposition 1.1: Model Checking Complexity [Fagin et al., 1995]

There is an algorithm that, given a pointed Kripke structure (M,w), and a
formula φ ∈ LC

AG, determines, in polynomial time O(||M || × |φ|) whether
(M,w) |= φ, where ||M || = |M [W]| + ∑︁n

i=0 |M [i]| with i ∈ AG, and |φ| is the
number of nested operators in φ.

1. Introduction & Preliminaries 37

SAT Complexity Epistemic logic
NP-complete S51, KD451

PSPACE-complete S5n, KD45n with n ≥ 2
EXPTIME-complete S5C

n , KD45C
n with n ≥ 2

Table 1.2: Complexity of the satisfiability problem with respect to the underlying Kripke
structure constraints [Fagin et al., 1995].

Let us note that to analyze the plan existence problem we need to categorize

action types into four distinct subsets. Depending on which subset an action type

belongs to, the action type itself impacts differently the e-state update. This

means that certain subsets of action types may increase the complexity of the plan

existence problem (as we can see in Table 1.3) when taken into consideration. In

MEP, as we will see in more detail in Chapter 2, the actions are often represented

through graphs. These action-graphs may collapse in more “simple” data structures,

i.e., singletons, chains, or trees, for some actions and that is what makes that

action part of a subset rather than another.

In particular, Bolander et al. [2015] distinguish between three different types

of action-structures:

• singletons: that corresponds to public announcements of propositional facts;

• chains and trees: that corresponds to different types of private announcements;

and

• graphs: that capture any propositional epistemic actions.

Moreover, for each one of these classes of structures, Bolander et al. analyze

the complexity for the plan existence problem considering also the effects and

preconditions expressive power:

• non-factual actions (changing only beliefs) with propositional preconditions;

• factual actions (changing beliefs and fluents) with propositional preconditions;

and

• factual actions with epistemic preconditions.

38 1.4. Multi-agent Epistemic Planning

Underlying Effects/Preconditions types
Action Non-Factual Factual Factual

Structure Propositional Propositional Epistemic
Singleton

NP-complete
[Bolander et al., 2015]

PSPACE-hard
[Jensen, 2014]

PSPACE-hard
[Jensen, 2014]

Chain

NP-complete
[Bolander et al., 2015]

Open
Question

Open
Question

Tree
PSPACE-complete

[Bolander et al., 2015]
Open

Question
Open

Question

Graph

EXPSPACE
[Bolander et al., 2015]

NON-Elementary
[Yu et al., 2013]

Undecidable
[Bolander and Andersen, 2011]

Table 1.3: Complexity of the plan existence problem [Bolander et al., 2015].

In Table 1.3 the complexity of the plan existence problem, depending on the

action type and on the underlying action structure, is summarised. As expected, the

complexity of the problem increases as we loosen the restrictions on the underlying

structure. Unfortunately, we are interested in the subset of actions that are

represented through graphs without restrictions and that have factual epistemic

preconditions (the right-bottom cell of Table 1.3). While these results are on a

general Kripke structure, i.e., not constrained by any S5 axiom, Bolander et al.

[2015] show that even the plan existence problem on S5n-states (more limited

than KD45n-states, in which we are mostly interested) is reducible to the halting

problem that it is well known to be undecidable.

[...] the (unobserved) past, like the future, is indefinite
and exists only as a spectrum of possibilities.

— Stephen Hawking
The Grand Design

[Hawking and Mlodinow, 2010]

2
Possibilities-Based MEP Action Language

Contents
2.1 Background . 39

2.1.1 The Epistemic Action Language mA∗ 40
2.1.2 Possibilities . 49

2.2 The Epistemic Action Language mAρ 55
2.2.1 The Language Specification 56
2.2.2 The Language Properties 59
2.2.3 mA∗ and mAρ Comparison 60

2.1 Background

While in Chapter 1 we presented a general introduction of the topics of this thesis,

in this section we will explore in more detail the concepts that are required to

describe the first contribution of our work, i.e., the multi-agent epistemic action

language mAρ. We will start in Section 2.1.1 where we will present the MEP action

language mA∗ [Baral et al., 2015, Le et al., 2018, Baral et al., 2022], which has

served as the foundation for our work. In Section 2.1.2 we will, then, introduce the

theory of non-well-founded sets [Aczel, 1988] that is required to better understand

the data structure that is used as a basis for mAρ. Finally, again in Section 2.1.2,

we will define formally the aforementioned data structure, referred to as possibility

39

40 2.1. Background

in literature [Gerbrandy and Groeneveld, 1997, Gerbrandy, 1999], highlighting

important properties that make it well-suited for representing e-states.

2.1.1 The Epistemic Action Language mA∗

With the introduction of the classical planning problem, languages for representing

actions and their effects were also proposed [Fikes and Nilsson, 1971]. These

languages are referred to as action languages [Gelfond and Lifschitz, 1998].

Over the years, several action languages for single-agent scenarios (e.g., STRIPS

[Fikes and Nilsson, 1971], ADL [Pednault, 1994] and SAS+ [Bäckström, 1995])

have been developed providing the foundation for several successful approaches

to automated planning. The effort of defining languages for classical planning

domains culminated in the well-known Planning Domain Description Language

(PDDL) [McDermott et al., 1998, Fox and Long, 2003] that standardized the

notations and that is routinely adopted by planners. Nonetheless, as said by Baral

et al. [2015]: “in single-agent domains, reasoning about actions and change mainly

involves reasoning about what is true in the world, what the agent knows about

the world, how the agent can manipulate the world (using world-changing actions)

to reach particular states, and how the agent (using sensing actions) can learn

unknown aspects of the world.”

On the other hand, multi-agent epistemic domains—the type of domain we are

considering—need more careful consideration when it comes to actions effects. In

particular, a MEP action language should be able to model how actions affect both

the environment and the agents’ beliefs (about the environment or others’ beliefs).

Similarly, the description of the states (be it an initial or a goal state) may involve

the agents’ beliefs. Few studies directly address the challenges derived by domains

in which information flows must be taken into consideration.

To the best of our knowledge, two works, i.e. Baral et al. [2015] and Muise

et al. [2015], firstly tackled the problem of providing formal action languages for

Multi-agent Epistemic Planning domains. In particular, in this section, we will

2. Possibilities-Based MEP Action Language 41

illustrate mA∗ [Le et al., 2018, Baral et al., 2022]1—the evolution of the language

mA+ provided by “An Action Language for Multi-Agent Domains: Foundations”

by Baral et al. [2015]—as it is the foundation of our newly introduced language mAρ.

We decided to develop a language starting from mA∗, rather than PDKB-

PDDL [Muise et al., 2015], because of the nature of the planning process employed

by the planners related to these languages. In fact, we thought that mA∗ to be more

in line with our objective of defining a comprehensive epistemic environment that

reasons on the full extent of LC
AG. While both planners can achieve these results,

mA∗ plans on a search space where each state is effectively a complete e-state, while

PDKB-PDDL makes use of a conversion into classical planning. Intuitively, the

latter transforms e-states properties into classical states to obtain a faster solving

process but renouncing to reason on “full-fledged” epistemic models. We, therefore,

preferred to define a system that, even if with a more resource-heavy procedure, is

able to reason and update complete e-states representation, e.g., Kripke structures.

Before formally introducing mA∗ we need to provide some notations that are

paramount to describe the language semantics. This introduction is supposed to

provide the reader with enough information to understand, at an intuitive level,

the characteristics of mA∗ and, therefore, does not provide all the details of the

language. For a complete analysis of the language, we address the interested reader

to Baral et al. [2022] where mA∗ is extensively analyzed.

The first idea that is necessary to introduce is the notion of event model (also

called update model) [Baltag and Moss, 2004, Van Benthem et al., 2006]. In mA∗,

the event models are used to define how the execution of actions impacts an e-state,

that is, they provide a formal way of defining how an action execution updates

the epistemic states. Let us now define the concept of update models, along with

the idea of substitution (necessary to define update models).

1Let us note that we will use Baral et al. [2015] and Baral et al. [2022] as main references for
mA∗ as they define its syntax and semantics exhaustively. In fact, Le et al. [2018] only illustrate
the additions to the language with respect to mA+ redirecting the readers to Baral et al. [2015]
for further information on the language.

42 2.1. Background

Definition 2.1: LC
AG-substitution [Baral et al., 2015]

Let LC
AG be a language defined over a set AG of n agents and a set F of k

fluents. An LC
AG-substitution is a set {f1 → φ1, . . . , fk → φk}, where each fi

is a distinct proposition in F and each φi ∈ LC
AG. We will implicitly assume

that for each f ∈ F \ {f1, . . . , fk}, the substitution contains f→ f. SUB(F ,AG)
denotes the set of all LC

AG-substitutions.

Definition 2.2: Event Model [Baral et al., 2015]

Given a language LC
AG, defined over a set AG of n agents and a set F of k

fluents, an event model Σ is a tuple ⟨E , Q, pre, sub⟩ where:

• E : is a set, whose elements are called events;

• Q: AG → 2E×E assigns an accessibility relation to each agent i ∈ AG;

• pre: E → LC
AG is a function mapping each event e ∈ E to a formula in

LC
AG; and

• sub: E → SUB(F ,AG) is a function mapping each event e ∈ E to a
substitution in SUB(F ,AG).

The idea behind event models is to provide a way to formally define an action

that can correctly alter the underlying e-state representation (let us imagine a

Kripke structure). Definition 2.3 illustrates how the information encoded in an

update model (Figure 2.1b) is used to obtain the correct e-state update.

Definition 2.3: Update by Event Models [Baral et al., 2022]

Let (Σ, γ) be an update template, where Σ = ⟨E , Q, pre, sub⟩ is an event model
and γ ∈ E , and lrt (M,w) be an epistemic state. The execution of (Σ, γ) in
(M,w) results in an epistemic state (M ′,w) = (M,w)⊗ (Σ, γ), where:

• M ′[W] = {(t, e) ∈M [W]× E | (M, t) |= pre(e)};

• M ′[w] = (M [w], γ);

• ((t1, e1), (t2, e2)) ∈ M ′[i] iff (t1, e1), (t2, e2) ∈ M ′[W], (t1, t2) ∈ M [i] and
(e1, e2) ∈ Q;

• For all (w, e) ∈M ′[W] and f ∈ F , M ′[π]((w, e)) |= f iff f→ φ ∈ sub(e)
and (M,w) |= φ.

2. Possibilities-Based MEP Action Language 43

opened
haskey_A
heads

opened
haskey_A

{A, B, C}{A, B, C} {A, B, C}

(a) The e-state that represents the configuration where the box is opened

σ τ

{B, C}{A, B, C} {A, B, C}
pre: heads
∧ opened

pre: ¬heads
∧ opened

(b) The representation of the update template (Σ, σ) relative to peek⟨A⟩.
The substitutions are not indicated as they are equal to ∅.

opened
haskey_A
heads

opened
haskey_A

{B, C}{A, B, C} {A, B, C}

(c) The updated e-state after the execution of peek⟨A⟩.

Figure 2.1: The execution of an action instance through the application of Definition 2.3.

Let us note that, for simplicity, we assume that the event of interest, i.e., γ, is

exactly one and that the given e-state has one pointed world. These restrictions

do not affect the definition of the language’s properties needed in our introduction.

Nonetheless, having a single-pointed world at each step means that the planning

process implicitly discards the idea of executing conformant planning (where multiple

unknown initial states should be kept into account). Since the language envisioned

by Baral et al. is able to tackle also incomplete descriptions of the world, these

assumptions are relaxed in their work [Baral et al., 2022].

Multiple events in a single update model correspond to multiple degrees of

44 2.1. Background

observability; in particular Figure 2.1b represents the update model of the action

instance peek⟨A⟩, introduced in Planning Domain 1.5. Here, only agent A becomes

aware of the status of the coins, while the others learn that A knows the coin

position without knowing it themselves—this corresponds to partial observability.

We, therefore, have that the event σ corresponds to agent A learning the coin

status, while event τ represents the other agents being aware of the peeking

action. Figure 2.1 illustrates the result of applying the procedure described in

Definition 2.3, with the update template in Figure 2.1b, to the Kripke structure

that represents the state where the box is opened (Figure 2.1a) obtaining the

correctly updated e-state (Figure 2.1c).

In what follows, we will introduce the syntax and the semantics of mA∗ that will

make use of more complex event models and observability relations. Once again, we

will make use of the Coin in the Box domain. In particular, the example in Planning

Domain 2.1 is a more complete version of the ones present in the previous chapter.

Each one of the actions presented in Planning Domain 2.1 falls into one of the

three types distinguished by Baral et al. [2022]. In particular, these action types are:

• World-altering actions (also called ontic): used to modify certain properties

(i.e., fluents) of the world, e.g., the actions open or distract_X of Planning

Domain 2.1.

• Sensing action: used by an agent to refine her/his beliefs about the world,

e.g., the action peek of Planning Domain 2.1.

• Announcement action: used by an agent to affect the beliefs of other agents.

e.g., in Planning Domain 2.1 the action announce.

2. Possibilities-Based MEP Action Language 45

Planning Domain 2.1: Three Agents and the Coin in the Box

Three agents, A, B, and C, are in a room where in the middle there is a box.
The box has a lock that can only be opened with a key. Inside the box, there
is a coin that lies heads up. In the initial configuration of this domain we have
that everybody knows that:

• none of the agents know whether the coin lies heads or tails up;

• the box is locked;

• only agent A has the key;

• if an agent is attentive (identified by look_X with X ∈ {A,B,C}) she/he
is aware of the execution of the actions; and

• agents A and C are attentive while B is not.

Moreover, we have that each agent can execute one of the following actions:

• open: an agent, if she/he has the key, can open the box. This results in
all the attentive agents believing that the box is open, while the others
would not be aware of any change in the environment.

• peek: to learn whether the coin lies heads or tails up, an agent can peek
into the box, but this requires the box to be open. This will result in
the peeking agents believing the coin position while the other attentive
agents are aware of this without knowing the coin position themselves.

• announce: this will result in all the listening (i.e., attentive) agents to
believe that the coin lies heads or tails up depending on the announced
value. As before, for our configuration, this action is only executable by
an agent who believes the coin position to be heads.

• distract_X/signal_X: these actions will make an attentive agent X
no more attentive or vice-versa, respectively.

Finally, in the desired configuration, A would like to know whether the coin
lies heads or tails up. She/He would also like to make agent B aware of this
fact. However, A would like to keep this information secret from C.

A series of action instances—that is, a plan—to achieve the goal may be
(1) distract_C⟨A⟩: to distract C from looking at the box; (2) signal_B⟨A⟩:
to tell B to look at the box; (3) open⟨A⟩: to open the box; and (4) peek⟨A⟩:
to make A peek into the box.

Given a domain D, an action instance a ∈ D(AI), a fluent literal f ∈ D(F),

a fluent formula ϕ ∈ LC
AG and a belief formula φ ∈ LC

AG, where LC
AG is defined

46 2.1. Background

Action type Full observers Partial Observers Oblivious
World-altering

Sensing
Announcement

Table 2.1: Action types and observability relations Baral et al. [2015].

over D(AG) and D(F), we can “briefly” introduce the syntax adopted in mA∗.

Executability conditions are captured by statements of the form:

executable a if φ;

for ontic actions we have:

a causes f if φ;

sensing actions statements have the form expressed by:

a determines f;

finally, announcement actions are expressed as follows:

a announces ϕ.

In multi-agent domains, the execution of an action might change or not the beliefs

of an agent. This is because, in such domains, each action instance associates an

observability relation to each agent. For example, agent C—that becomes oblivious

after being distracted by A—is not able to see the execution of the action open⟨A⟩.

On the other hand, any agent who is watching a sensing or an announcement action

can change her/his beliefs; e.g., agent B, who is watching agent A sensing the status

of the coin, will know that A knows the status of the coin without knowing it

her/him-self. Table 2.1 summarizes the possible observability relations for each

type of action. Partial observability for world-altering action is not admitted as,

whenever an agent is aware of the execution of an ontic action, she/he must know

its effects on the world as well. To indicate the set of agents that belong to the

Full, Partial, and Oblivious observers we will use F, P, and O, respectively. The

2. Possibilities-Based MEP Action Language 47

idea of observability is captured in mA∗ with specific statements. In particular, to

state that an agent i is Fully observant, with respect to an action a, it is used:

i observes a if φ;

while to identify an agent i as Partially observant, with respect to an action a, it is

used:

i aware_of a if φ.

Notice that if we do not state otherwise, an agent will be considered oblivious.

Finally, statements of the form

initially φ;

and

goal φ

capture the initial and goal conditions, respectively.

The core of the language semantics is the transition function, and as already

mentioned, it is defined using the concept of update models. In Figure 2.2a,

Figure 2.2b, and Figure 2.2c we illustrate the update templates for ontic, sensing,

and announcement actions, using open⟨A⟩, peek⟨A⟩, announce⟨A⟩, respectively.

The starting state is the one where A and B are attentive while C is not. That is,

we can see A as representative for the fully observant, B as partially observant, and

C as oblivious. For the sake of the presentation let us assume that B is partially

observant also for the announcement action execution.

Finally, we can define the mA∗ transition function Φ. Let (M,w) be an e-state

and let a ∈ D(AI). The result of executing a on (M,w) is the e-state, denoted

by Φ(a, (M,w)) defined as follow:

• If a is not executable in (M,w) then Φ(a, (M,w)) = ∅

• If a is executable in (M,w) and (Σ, σ) is the representation of the occurrence

of a on (M,w) then (M ′, w) = (M,w)⊗ (Σ, σ).

For more details and examples we address, once again, the reader to Baral et al.

[2022].

48 2.1. Background

σ ϵ
{C}{A, B} {A, B, C}

pre:
haskey_A

pre: ∅

(a) The update template (Σ, σ) of the ontic action instance open⟨A⟩.
The substitution in σ intuitively add the fluent haskey_A, and
removes its negation. In ϵ the substitution is equal to ∅.

σ
{C}{A, B}

pre: heads

τ

ϵ

{C}{A, B}

{A, B, C}

pre: ¬heads

pre: ∅
{B}

(b) The update template (Σ, σ) of the sensing action instance
peek⟨A⟩. The substitutions are equal to ∅.

σ
{C}{A, B}

pre: heads

τ

ϵ

{C}{A, B}

{A, B, C}

pre: ¬heads

pre: ∅
{B}

(c) The update template (Σ, σ) of the announcement action instance
announce⟨A⟩. For the sake of the presentation we assume B to be
partially observant. The substitutions are equal to ∅.

Figure 2.2: Examples of update templates for each action type described by Baral et al.
[2022].

2. Possibilities-Based MEP Action Language 49

0 1 2 3

(a) Pictures of von Neumann ordinals where 0 =
∅; 1 = {∅}; 2 = {∅, {∅}}; 3 = {∅, {∅}, {∅, {∅}}}.

3

2
1

210

0

(b) Alternative Pictures of von
Neumann ordinals 2 and 3.

Figure 2.3: Well-founded sets represented through graphs [Aczel, 1988].

2.1.2 Possibilities

We are now ready to define the concept of possibility (originally introduced by Ger-

brandy and Groeneveld [1997]). This section aims to provide the reader with enough

information to understand what possibilities are, without providing all the details

behind this topic. More on possibilities can be found in the works by Gerbrandy and

Groeneveld [1997], Gerbrandy [1999], while we refer the reader to Aczel [1988] for a

complete introduction on non-well-founded set theory and to Dovier [2015] for an

introduction of non-well-founded sets and their equivalence in logic programming.

Non-well-founded Set Theory Fundamentals Let us start by giving some

fundamental definitions of set theory. According to Aczel [1988], a well-founded

and a non-well-founded set are defined as follows:

Definition 2.4: Well-founded Set

Let E be a set, E ′ one of its elements, E ′′ any element of E ′, and so on. A
descent is the sequence of steps from E to E ′, E ′ to E ′′, etc. . . . A set is
well-founded (or ordinary) when it only gives rise to finite descents.

Definition 2.5: Non-well-founded Set [Aczel, 1988]

A set is non-well-founded (or extraordinary) when among its descents there
are some which are infinite.

All sets, in the sense of Definition 2.4, can be represented in the form of graphs,

called pictures, as shown in Figure 2.3. The concept of picture of a set is introduced,

alongside the definition of decoration, in Definition 2.6.

50 2.1. Background

(a) Standard picture Ω. (b) Unfolding of the picture of Ω.

Figure 2.4: Representation of the non-well-founded set Ω = {Ω} [Aczel, 1988].

Definition 2.6: Decoration and Picture

• A decoration of a graph G = (V,E) is a function δ that assigns to each
node n ∈ V a set δn in such a way that the elements of δn are exactly the
sets assigned to successors of n, i.e., δn = {δn′ | (n, n′) ∈ E}. Therefore,
the edges denote the membership relations.

• If δ is a decoration of a pointed graph (G, n), then (G, n) is a picture of
the set δn.

These concepts are essential to investigate the differences between well-founded

and non-well-founded set theories. We know that in well-founded set theory,

it holds Mostovski’s lemma: “each well-founded graph2 is a picture of exactly

one set” [Mostowski, 1949]. On the other hand, when the Foundation Axiom,

expressed by Gerbrandy [1999] as “Only well-founded graphs have decorations”, is

substituted with the Anti-Foundation Axiom (AFA), expressed by Aczel [1988]

as “Every graph has a unique decoration”, the following consequences become true:

• every graph is a picture of exactly one set (AFA as is formulated by Gerbrandy

[1999]);

• non-well-founded sets exist given that a non-well-founded pointed graph has

to be a picture of a non-well-founded set.

Aczel [1988], Gerbrandy [1999] point out how non-well-founded sets can also be

expressed through systems of equations. This concept will help us to formalize the

notion of state in our action language mAρ. A quick example of this representation

can be derived by the set Ω = {Ω} (Figure 2.4). We can informally define this set
2A well-founded graph is a graph that doesn’t contain an infinite path n→ n′ → n′′ → . . . of

successors.

2. Possibilities-Based MEP Action Language 51

as the (singleton) system of equations x = {x}. Systems of equations and their

solutions are described more formally in Definition 2.7.

Definition 2.7: System of Equations [Gerbrandy, 1999]

For each class of atoms, i.e., objects that are not sets and have no further
set-theoretic structure, X a system of equations in X is a class τ of equations
x = X, where x ∈ X and X ⊆ X , such that τ contains exactly one equation
x = X for each x ∈ X . A solution to a system of equations τ is a function δ
that assigns to each x ∈ τ (X)a a set δx such that δx = {δy | y ∈ X}, where x = X
is an equation of τ . If δ is the solution to a system of equations τ , then the set
{δx | x ∈ τ(X)} is called the solution set of that system.

aτ(X) denotes the class of atoms X in which τ is described.

Since both graphs and systems of equations are representations for non-well-

founded sets, it is natural to investigate their relationships. In particular, it is

interesting to point out how from a graph G = (V,E) it is possible to construct a

system of equations τ and vice versa. The nodes in G, in fact, can be the set of atoms

τ(X) and, for each node v ∈ V , an equation is represented by v = {v′ | (v, v′) ∈ E}.

Since each graph has a unique decoration, each system of equations has a unique

solution. Nonetheless, different graphs can represent the same set, and the notion

that can help to identify this equivalence is known as bisimulation.

Bisimulation As mentioned before the idea of bisimulation can be exploited to

characterize graphs, and therefore Kripke models, with “the same behavior”. In

particular, it can be proved that there is a unique minimum graph bisimilar to a

given one, and it can be found by computing the maximum bisimulation. Bisimilar

labeled graphs (or Kripke structures) have therefore a unique solution as well since

we collapse their representations into the minimal one. While this topic is of the

utmost importance in modal logic, and has been studied and used in several fields,

it is not the aim of this thesis to study it in depth. Let us, therefore, only provide

some basic notions referring the interested readers to much more complete works

such as Gerbrandy [1999], Bolander et al. [2015], Dovier [2015]. In particular,

Definition 2.8 formally introduces the concepts of bisimulation and Figure 2.5

52 2.1. Background

A,B

C
w0 w1 t0

t1

t2

A

B

C

C

f

f

f

g
g

Figure 2.5: In Figure are represented two different pointed Kripke structures (M1, w0)
(left) and (M2, t0) (right). It is easy to see that these two Kripke structures are structurally
different but bisimilar since there exists a relation {(w0, t0), (w1, t1), (w1, t2)} that is a
bisimulation [Riouak, 2019].

presents a graphical example of such concept. Finally, Corollary 2.1 states how the

concept of entailment and bisimulation are intertwined in Kripke structures.

Definition 2.8: Bisimulation [Bolander et al., 2015]

Given two pointed Kripke structures (M1,w0) and (M2, t0) let W = M1[W]
and T = M2[W], and let F be a set of propositional variables. The relation
R ⊆ W×T is a bisimulation if and only if for all w ∈ W and t ∈ T, if (w, t) ∈ R
then:

• Atom: w |= f ⇐⇒ t |= f, for all f ∈ F ;

• Forth: For all w′ such that (w,w′) ∈ M1[B] there exists a t′ such that
(t, t′) ∈M2[B] and (w′, t′) ∈ R;

• Back: For all t′ such that (t, t′) ∈ M2[B] there exists a w′ such that
(w,w′) ∈M1[B] and (t′,w′) ∈ R;

Two pointed Kripke structures (M1,w0) and (M2, t0) are bisimilar, indicated
with (M1,w0) ≃ (M2, t0), if and only if there exists a bisimulation between M1
and M2 such that (s0, t0) ∈ R.

Corollary 2.1: Truth in Bisimilar Kripke Structures

Given two pointed Kripke structures (M1,w0) and (M2, t0) and a language LC
AG,

we have that:

(M1,w0) ≃ (M2, t0) ⇐⇒ (∀φ ∈ LC
AG : (M1,w0) |= φ ⇐⇒ (M2, t0) |= φ).

2. Possibilities-Based MEP Action Language 53

Possibilities Let us now introduce the notion of possibility, following Gerbrandy

and Groeneveld [1997]:

Definition 2.9: Possibilities [Gerbrandy and Groeneveld, 1997]

Let AG be a set of agents and F a set of propositional variables:

• A possibility u is a function that assigns to each propositional variable
f ∈ F a truth value u(f) ∈ {0, 1} and to each agent i ∈ AG an information
state u(i) = σ.

• An information state σ is a set of possibilities.

In Section 2.2 we will use this concept to describe an epistemic state. The intuition

behind this is that a possibility u is a “possible” interpretation of the world and of

the agents’ beliefs. That is, u(f) specifies the truth value of the fluent f in u and

u(a) is the set of all the interpretations that agent a considers possible in u.

Moreover, a possibility can be represented as a decoration (Definition 2.6) of

a labeled graph and, therefore, as a unique solution to a system of equations for

possibilities (Definition 2.10), as shown in Figure 2.6. A possibility represents

the solution to the minimal system of equations in which all bisimilar systems

of equations are collapsed; namely, the possibilities that represent decorations of

bisimilar labeled graphs are bisimilar and can be represented by the minimal one.

This shows that the class of bisimilar labeled graphs and, therefore, of bisimilar

Kripke structures, used by mA∗ as e-states, can be represented by a single possibility.

Definition 2.10: System of Equations for Possibilities
[Gerbrandy, 1999]

Given a set of agents AG and a set of propositional variables F , a system of
equations for possibilities in a class of possibilities X is a set of equations such
that for each x ∈ X there exists exactly one equation of the form x(f) = b,
where b ∈ {0, 1}, for each f ∈ F , and of the form x(i) = X, where X ⊆ X , for
each i ∈ AG.
A solution to a system of equations for possibilities is a function δ that assigns
to each atom x a possibility δx in such a way that if x(f) = i is an equation
then δx(f) = i, and if x(i) = σ is an equation, then δx(i) = {δy | y ∈ σ}.

54 2.1. Background

w w′

v v′

A, B

A, B, C A, B, C

A, B

A, B, C

A, B

C C

C C

(a) Picture of w.

w = {(A, {w,w′}), (B, {w,w′}), (C, {v, v′}), f, g, h}
w′ = {(A, {w,w′}), (B, {w,w′}), (C, {v, v′}), g, h}
v = {(A, {v, v′}), (B, {v, v′}), (C, {v, v′}), f, h}
v′ = {(A, {v, v′}), (B, {v, v′}), (C, {v, v′}), h}

(b) System of equations of w.

Figure 2.6: Representation of a generic possibility w. The possibility is expanded for
clarity.

Finally, in Proposition 2.1, we show some interesting relations between labeled

graphs and possibilities, while in Proposition 2.2 we summarize important properties

that capture the relations between Kripke structures and possibilities.

Proposition 2.1: Labeled Graphs and Possibilities
[Gerbrandy and Groeneveld, 1997]

The relations between labeled graphs and possibilities are summarized as follows:

• each possibility can be pictured by a labeled graph;

• each labeled graph has a unique decoration;

• two labeled graphs have the same decoration if and only if are bisimilar.

Proposition 2.2: Kripke Structures and Possibilities

Given a Kripke structure (M,w), a possibility u, and a language LC
AG, we have

that:

• each pointed Kripke structure has exactly one set as its solution;

• two models are bisimilar if and only if they are the picture of the same
set; and

• If (M,w) is a picture of u, then for each φ ∈ LC
AG it holds (M,w) |=

φ ⇐⇒ u |= φ.

2. Possibilities-Based MEP Action Language 55

p

p, q

{A}
{A}

{B}

(a) A possibility.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w(p) = 1 w(q) = 0
v(p) = 1 v(q) = 1
u(p) = 0 u(q) = 0
w(A) = {v} w(B) = {∅}
v(A) = {v} v(B) = {u}
u(A) = {∅} u(B) = {∅}

(b) Its system of
equation.

w

v

u
(c) The solution.

p,q

p

{B}

{A}

{A}

w

v

u

(d) The corresponding
Kripke structure.

Figure 2.7: An e-state represented through a possibility (a) and then converted to a
Kripke structure (d).

2.2 The Epistemic Action Language mAρ

The aforementioned idea of possibilities is central in mAρ. This language, instead

of using Kripke structures, exploits possibilities as e-states (Figure 2.7). That is,

mAρ, while keeping the same syntax of mA∗, changes the way of representing an

epistemic state. The modification of the underlying structure implies also a different

formalization of the transition function. This allowed us to define a new planning

environment that outperforms the state-of-the-art comprehensive epistemic planner

presented by [Le et al., 2018] by orders of magnitude in the experiments.

We will now briefly explain how a possibility can be used to represent an e-

state. The main idea is to identify with each possibility u both an interpretation

of the world and of each agent’s beliefs. That is, the component u(f) assigns a

truth value to the fluent f in u while u(i) represents the (non-well-founded) set

of possibilities that are considered by agent i.

The choice of possibilities over Kripke structures as e-state representation

provides several advantages. One of these is, as said by Gerbrandy and Groeneveld

[1997], that: “a possibility represents the solution to the minimal system of equations

in which all bisimilar Kripke structures are collapsed”. Intuitively, this means that

a class of bisimilar Kripke structures, that in mA∗ represents different e-states,

is easily represented by a single possibility and therefore, by a single e-state in

mAρ. That is, thanks to possibilities and the newly introduced transition function

56 2.2. The Epistemic Action Language mAρ

it has been possible to maintain e-states with smaller size, with respect to the

planner EFP 1.0 presented by Le et al. [2018], during the solving process. From a

more concrete point of view, implementing mAρ allowed us to work on e-states of

reduced dimension3 without having to rely on minimization techniques, such as the

algorithms presented by Paige and Tarjan [1987], Dovier et al. [2004], during the

solving process. Another advantage of using possibilities derives from their non-

well-founded aspect. Since a possibility is a non-well-founded graph, whose nodes

are themselves possibilities, the solving process can store each calculated possibility;

and, whenever needed, it can retrieve the stored possibilities to reuse them as “nodes”

inside a new e-state. To summarize, although possibilities and Kripke structures are

tightly connected (Figure 2.7), the advantages of using mAρ are: (i) the reduced

size of the e-states that does not depend on external procedures; and (ii) the fact

that possibilities can be stored and easily reused thanks to their non-well-founded

nature. In this sense, we can see possibilities as a more compact representation,

with respect to Kripke structures, that allows us to save computational resources.

2.2.1 The Language Specification

As the first main contribution, we present the language mAρ4. mAρ borrows

the syntax from mA∗ but changes the underlying e-state representation from

Kripke structures to possibilities. After rapidly introducing the concept of en-

tailment we will describe an improved transition function for mAρ along with

some important properties.

Let us start with the concept of entailment for possibilities. Definition 2.11

combines the concept of Gerbrandy [1999] with the action language mA∗.

3With respect to the e-states generated following mA∗.
4The original version of mAρ was presented by Fabiano et al. [2019]. Instead, here we will

introduce a newer version that maintains the same core while optimizing some details.

2. Possibilities-Based MEP Action Language 57

Definition 2.11: Entailment in Possibilities

Given, a fluent f, the belief formulae φ, φ1, φ2, an agent i, a group of agents α,
and a and a possibility u:

(i) u |= f if u(f) = 1;

(ii) u |= φ if φ is a fluent formula and u |= φ following the standard semantics
for ¬ and ∧;

(iii) u |= Bi(φ) if for each v ∈ u(i), v |= φ;

(iv) u |= ¬φ if u ̸|= φ;

(v) u |= φ1 ∧ φ2 if u |= φ1 and u |= φ2;

(vi) u |= Eαφ if u |= Bi(φ) for all i ∈ α;

(vii) u |= Cα(φ) if u |= Ek
αφ for every k ≥ 0, where E0

αφ = φ and Ek+1
α φ =

Eα(Ek
αφ).

We are now ready to introduce the transition function. This new transition

function is,in our opinion, more compact and therefore, more approachable than

the one introduced by Le et al. [2018]. Moreover, the “simplicity” of the e-states

update formalization is reflected in a much cleaner and faster implementation, as

we will see in Chapter 5. Let a domain D, its set of action instances D(AI), and

the set S of all the possibilities reachable from D(φini) with a finite sequence of

action instances be given. Moreover let us identify the observability groups F, P,

and O with respect to an action instance a with Fa, Pa, and Oa, respectively. The

transition function Φ : D(AI)× S → S ∪ {∅} for mAρ relative to D is formalized

following Definition 2.12.

Definition 2.12: mAρ transition function

Allow us to use the compact notation u(F) = {f | f ∈ D(F) ∧ u |= f} ∪ {¬f |
f ∈ D(F) ∧ u ̸|= f} for the sake of readability. Let an action instance a
∈ D(AI), a possibility u ∈ S and an agent i ∈ D(AG) be given. If a is not
executable in u, then Φ(a, u) = ∅ otherwise Φ(a, u) = u′, where:

• Let us consider the case of an ontic action instance a. We then define u′

58 2.2. The Epistemic Action Language mAρ

such that:

e(a, u) = {ℓ | (a causes ℓ) ∈ D}; and
e(a, u) = {¬ℓ | ℓ ∈ e(a, u)} where ¬¬ℓ is replaced by ℓ.

u′(f) =
⎧⎨⎩1 if f ∈ (u(F) \ e(a, u)) ∪ e(a, u)

0 if ¬f ∈ (u(F) \ e(a, u)) ∪ e(a, u)

u′(i) =

⎧⎪⎨⎪⎩
u(i) if i ∈ Oa⋃︁
w∈u(i)

Φ(a,w) if i ∈ Fa

• if a is a sensing action instance, used to determine the fluent f. We then
define u′ such that:

e(a, u) ={f | (a determines f) ∈ D ∧ u |= f}
∪{¬f | (a determines f) ∈ D ∧ u ̸|= f}

u′(F) = u(F)

u′(i) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
u(i) if i ∈ Oa⋃︁
w∈u(i)

Φ(a,w) if i ∈ Pa⋃︁
w∈u(i): e(a,w)=e(a,u)

Φ(a,w) if i ∈ Fa

• if a is an announcement action instance of the fluent formula ϕ. We then
define u′ such that:

e(a, u) =
⎧⎨⎩0 if u |= ϕ

1 if u |= ¬ϕ

u′(F) = u(F)

u′(i) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
u(i) if i ∈ Oa⋃︁
w∈u(i)

Φ(a,w) if i ∈ Pa⋃︁
w∈u(i): e(a,w)=e(a,u)

Φ(a,w) if i ∈ Fa

2. Possibilities-Based MEP Action Language 59

2.2.2 The Language Properties

The newly introduced transition function allowed us to reason about fundamental

properties that, as said by Baral et al. [2015], each multi-agent epistemic action

language should respect. In particular, each epistemic reasoner should ensure that:

• if an agent is fully aware of the execution of an action instance then her/his

beliefs will be updated with the effects of such action execution;

• an agent who is only partially aware of the action occurrence will believe that

the agents who are fully aware of the action occurrence are certain about the

effects of the actions; and

• an agent who is oblivious of the action occurrence will also be ignorant about

its effects.

Propositions 2.3 to 2.5 capture the concept of beliefs update and ensure that,

when satisfied, the action language can be soundly used for multi-agent epistemic

reasoning. For the sake of readability, their complete proofs are reported in

Appendix A.2. In the following, we will use p′ instead of Φ(a, p) when possible

to avoid unnecessary clutter.

Proposition 2.3: Ontic Action Properties

Assume that a is an ontic action instance executable in u s.t. a causes ℓ if ψ
belongs to D. In mAρ it holds that:

(1) for every agent x ∈ Fa, if u |= Bx(ψ) then u′ |= Bx(ℓ);

(2) for every agent y ∈ Oa and a belief formula φ, u′ |= By(φ) iff u |= By(φ);
and

(3) for every pair of agents x ∈ Fa and y ∈ Oa and a belief formula φ, if
u |= Bx(By(φ)) then u′ |= Bx(By(φ)).

60 2.2. The Epistemic Action Language mAρ

Proposition 2.4: Sensing Action Properties

Assume that a is a sensing action instance and D contains the statement a
determines f. In mAρ it holds that:

(1) if u |= f then u′ |= CFaf;

(2) if u |= ¬f then u′ |= CFa¬f;

(3) u′ |= CPa(CFaf ∨CFa¬f);

(4) u′ |= CFa(CPa(CFaf ∨CFa¬f));

(5) for every agent y ∈ Oa and a belief formula φ, u′ |= By(φ) iff u |= By(φ);
and

(6) for every pair of agents x ∈ Fa and y ∈ Oa and a belief formula φ, if
u |= Bx(By(φ)) then u′ |= Bx(By(φ)).

Proposition 2.5: Announcement Action Properties

Assume that a is a announcement action instance and D contains the statement
a announces φ. If u |= ϕ in mAρ it holds that:

(1) u′ |= CFaϕ;

(2) u′ |= CPa(CFaϕ ∨CFa¬ϕ);

(3) u′ |= CFa(CPa(CFaϕ ∨CFa¬ϕ));

(4) for every agent y ∈ Oa and a belief formula φ, u′ |= By(φ) iff u |= By(φ);
and

(5) for every pair of agents x ∈ Fa and y ∈ Oa and a belief formula φ, if
u |= Bx(By(φ)) then u′ |= Bx(By(φ)).

Baral et al. [2015] show how the above-listed properties capture the concept of

update in an epistemic environment. Therefore, we consider the epistemic action

languages, that respect all of the aforementioned properties, to be correct with

respect to the knowledge/belief update. That is the case with both mA∗ and mAρ.

2.2.3 mA∗ and mAρ Comparison

Finally, for a clearer understanding on differences between the two languages, let us

show (i) the execution, on both mA∗ and mAρ, of the action instances sequence ∆;

2. Possibilities-Based MEP Action Language 61

distract_C⟨A⟩ open⟨A⟩ peek⟨A⟩
FD A, B, C A, B A
PD - - B
OD - C C

Table 2.2: Observability relations of the actions instances in ∆.

and (ii) a direct comparison of the number of worlds and edges created by mA∗

and mAρ when executing a sequence of action instances.

Plan Execution ∆ = distract_C⟨A⟩, open⟨A⟩, peek⟨A⟩ is the sequence that

leads to the desired goal in Planning Domain 2.1 if we assume that B is already

looking at the box. With this, we want to give a graphical explanation of both

the transition functions and state-space defined by the two languages (Figures 2.8

to 2.11). Each state in mA∗ will be represented by a Kripke structure while in mAρ

will be a possibility (expanded to its respective system of equations for clarity).

The observability relations of each action instance in ∆ are expressed in Table 2.2.

Assuming that α = {A, B, C}, then the initial state, based on a small variation

of Planning Domain 2.1 where we assume B to be already attentive, is defined

by the conditions:

• initially Cα(haskey_A) ∧ Cα(¬haskey_B) ∧ Cα(¬haskey_C)

• initially Cα(¬opened)

• initially Cα(¬Bi(heads) ∧ ¬Bi(¬heads)) for i ∈ α

• initially Cα(look_i) for i ∈ α

• initially heads

Finally, the goal of Planning Domain 2.1 is expressed with the following formulae:

BA(heads) ∧BA(BB((BA(heads) ∨BA(¬heads))))

BB(BA(heads) ∨BA(¬heads)) ∧ (¬BB(heads ∧ ¬BB(¬heads)))

BC([
⋀︂

i∈{A,B,C}
(¬Bi(heads) ∧ ¬Bi(¬heads))])

62 2.2. The Epistemic Action Language mAρ

{A, B, C}w0 w1

{A, B, C} {A, B, C}

M0[π](w0) = {look_i, haskey_A, heads}
M0[π](w1) = {look_i, haskey_A}
where i ∈{A,B,C}.

(a) The initial Kripke structure (M0, w0).

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
u = {(i, {u, u′}), look_i,

haskey_a, heads}
u′ = {(i, {u, u′}), look_i,

haskey_a}
where i ∈ {A,B,C}.

(b) The initial possibility u.

Figure 2.8: The initial state.

{A, B, C}p0 p1

{A, B, C} {A, B, C}

M1[π](p0) ={look_A, look_B, haskey_A, heads}
M1[π](p1) ={look_A, look_B, haskey_A}

(a) The Kripke structure (M1, p0), obtained after the
execution of distract_C⟨A⟩ in (M0, w0) (Figure 2.8a).

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
v = {(i, {v, v′}), look_A,

look_B, haskey_A, heads}
v′ = {(i, {v, v′}), look_A,

look_B, haskey_A}
where i ∈ {A,B,C}

(b) Possibility v, obtained after the execu-
tion of distract_C⟨A⟩ in u (Figure 2.8b).

Figure 2.9: Execution of distract_C⟨A⟩.

2. Possibilities-Based MEP Action Language 63

{A, B, C}p0 p1

{A, B, C} {A, B, C}

{A, B}q0 q1

{A, B} {A, B}

{C}

{C} {C}

{C}

M2[π](q0) ={look_i, haskey_A, opened, heads}
M2[π](q1) ={look_i, haskey_A, opened}

where i ∈{A,B}.

(a) The Kripke structure (M2, q0), obtained after the
execution of open⟨A⟩ in (M1, p0) (Figure 2.9a).

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
w = {(i, {w,w′}), (C, {v, v′}), look_i,

haskey_a, opened, heads}
w′ = {(i, {w,w′}), (C, {v, v′}), look_i,

haskey_a, opened}
where i ∈ {A,B} and v, v′, are the
possibilities of Figure 2.9b.

(b) Possibility w, obtained after the execution of
open⟨A⟩ in v (Figure 2.9b).

Figure 2.10: Execution of open⟨A⟩.

{A, B, C}p0 p1

{A, B, C} {A, B, C}

Br0 r1

{A, B} {A, B}

{C}

{C} {C}

{C}

M3[π](r0) ={look_i, haskey_A, opened, heads}
M3[π](r1) ={look_i, haskey_A, opened}

where i ∈ {A,B}.

(a) The Kripke structure (M3, q0), obtained after the
execution of peek⟨A⟩ in (M2, q0).

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
z = {(A, {z}), (B, {z, z′})(C, {v, v′}),

look_i, haskey_a, opened, heads}
z′ = {(A, {z′}), (B, {z, z′})(C, {v, v′}),

look_i, haskey_a, opened}
where i ∈ {A,B} and the possibilities
v, v′ are represented in Figure 2.9b.

(b) Possibility z, obtained after the execution of
peek⟨A⟩ in w (Figure 2.10b).

Figure 2.11: Execution of peek⟨A⟩.

64 2.2. The Epistemic Action Language mAρ

e-States Size Comparison To conclude, let us summarize, in Figure 2.12, the

difference in size of the e-states of created by mAρ and mA∗. This figure gives

an intuitive idea of how mAρ helps in reducing the e-state size and its relative

overhead. We note, in fact, that the size of the e-states, generated after ten

consecutive action instances execution, varies immensely between the one generated

by mAρ, that is comprised of 59 worlds and 291 edges, and the one produced

by mA∗ that has 1461 worlds and 8037 edges. Let us stress that with a smaller

e-state size is associated a faster solving process as we will show in the experimental

evaluation, later in this thesis (Chapter 5).

0 1 2 3 4 5 6 7 8 9 10

300

600

900

1,200

1,500

Executed actions

G
en

er
at

ed
wo

rld
s

mA∗

mAρ

(a) Worlds generated by mAρ and mA∗.

0 1 2 3 4 5 6 7 8 9 10

1,500

3,000

4,500

6,000

7,500

Executed actions

G
en

er
at

ed
ed

ge
s

mA∗

mAρ

(b) Edges generated by mAρ and mA∗.

Figure 2.12: Comparison between the number of worlds and edges generated by mAρ

and mA∗ on the Coin in the Box domain with a sequence of ten action instances.

Fidarsi è bene, non fidarsi è meglio.

To trust is good, not to trust is better.

— Italian proverb

3
Communication with Trust

Contents
3.1 Trust in mAρ . 65

3.1.1 un/mis-Trustworthy Announcement 66
3.1.2 Desired Properties . 74

3.2 Capturing Trust with Update Models 77
3.2.1 mA∗ un-Trustworthy Announcement 77
3.2.2 mA∗ mis-Trustworthy Announcement 79

3.1 Trust in mAρ

As already mentioned, multi-agent planning and epistemic reasoning have recently

gained attention from several research communities. Efficient autonomous systems

that can reason in these domains could lead to winning strategies in various fields

such as economy [Aumann et al., 1995], security [Balliu et al., 2011], justice [Prakken,

2013], politics [Carbonell Jr, 1978] and can be exploited by autonomous devices,

e.g., self-driving cars, that can control several aspects of our daily life. We already

explained why epistemic reasoners are not only interested in the state of the

world, but also in the knowledge/beliefs of the agents. Nonetheless, the existing

epistemic action languages [Bolander and Andersen, 2011, Muise et al., 2015, Baral

et al., 2015, Fabiano et al., 2020, Baral et al., 2022] are able to model several

65

66 3.1. Trust in mAρ

families of problems and study their information flows but cannot comprehensively

reason on aspects like trust, dishonesty, deception, and other subtle epistemic

concepts. To exploit epistemic reasoning in complex real-world scenarios it is,

then, necessary to introduce the aforementioned epistemic nuances in the formalism

used to express epistemic domains.

In this first section, we present an “expansion” of mAρ that allows us to formalize

the notion of Trust. We do so by introducing two new actions that model the

information exchange between agents when the idea of trust is involved:

(i) un-trustworthy announcement; and

(ii) mis-trustworthy announcement.

In particular, (i) un-trustworthy announcement formalizes the situation when the

untrusty agents will not change their beliefs about the world no matter what the

announcer says; and (ii) mis-trustworthy announcement captures the scenarios

where the announcer, when not trusted, is believed to have a systematic faulty

perception of the announced environment’s properties. This leads the untrusty

agents to believe the opposite of what has been announced.

3.1.1 un/mis-Trustworthy Announcement

We are now ready to provide a formal definition of the actions un-trustworthy

announcement and mis-trustworthy announcement. That is, an agent can or cannot

trust what another agent is telling her/him and act consequently. The expressions

i t_announces a if φ;

and

i m_announces a if φ;

express that the agent i is executing an un-trustworthy announcement or a mis-

trustworthy announcement, respectively.

In defining the actions let us consider a static and globally visible version of

“trust” that can be formalized with a simple function T : AG ×AG ↦→ {0, 1} and

that enriches the definition of MEP domain (Definition 3.1).

3. Communication with Trust 67

Definition 3.1: MEP Domain with Trust

A MEP domain with Trust is a tuple D = ⟨F ,AG,A, T , φini, φgoal⟩, where
the additional (with respect to Definition 1.15) element T contains the trust
relations between agents:

T (i, j) =
⎧⎨⎩1 if [j trust i]

0 otherwise

where i and j ∈ D(AG).

We will consider only the case where T is a static and globally visible function. Let

us notice that having T to be dynamic is easily achievable. In particular, we just

need to define how T may vary, e.g., making the function depending on some fluents

value. For the sake of simplicity, let us imagine T to be fixed and not dependent on

the plan execution. On the other hand, making T not globally visible—i.e., each

agent knows her/his own version of the trust function—is not straightforward. The

problem arises when two agents have different views of the same trust relation leading

to the generation of different e-states (i.e., each agent must preserve its separate

view of the domain). We leave the investigation of this scenario as future work.

To clarify the e-state update after the execution of the new actions we will

also present a graphical representation of the transition function application. The

examples of execution will be based on a variation of the Grapevine domain,

firstly introduced by Kominis and Geffner [2015], described later in Planning

Domain 3.1. Let us now provide a formal definition of e-state update of the

two new actions of mAρ.

un-Trustworthy Announcement

We can now introduce the transition function for an un-trustworthy announcement.

Intuitively, this action models an announcement where the listening agents can

or cannot trust the announcer. That is:

• the trusty agents will update their belief consistently with what has been

announced; and

68 3.1. Trust in mAρ

• the untrusty1 ones will maintain their beliefs about the world and will only

update their perspective on the beliefs of the trusty agents.

Let us recall that the sets Fa,Pa,Oa represent the set of fully observant, partially

observant, and oblivious agents with respect to the execution of an action instance

a⟨i⟩, respectively.

Let a domain D, its set of action instances D(AI), and the set S of all the

possibilities reachable from D(φini) with a finite sequence of action instances be

given. The transition function Φ : D(AI)× S → S ∪ {∅} for the un-trustworthy

announcement relative to D is presented in Definition 3.2. Intuitively, this transition

function allows, through the use of Υ and Ψ, to model the idea that the untrusty

agents maintain their beliefs while knowing that the trusty ones updated their point

of view of the “physical world” (and vice versa).

1The agents that are fully observant with respect to the announcement but that do not trust
the announcer.

3. Communication with Trust 69

Definition 3.2: mAρ un-Trustworthy Announcement

Allow us to use the compact notation u(F) = {f | f ∈ D(F) ∧ u |= f} ∪ {¬f |
f ∈ D(F) ∧ u ̸|= f} for the sake of readability. Let an action instance a⟨i⟩
∈ D(AI) where agent i ∈ D(AG) announces the fluent formula ϕ, an and a
possibility u ∈ S be given.
If a is not executable in u, then Φ(a, u) = ∅ otherwise Φ(a, u) = u′, where:

e(a, u) =
⎧⎨⎩0 if u |= ϕ

1 if u |= ¬ϕ
u′(F) = u(F)

u′(j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(j) if j ∈ Oa⋃︁
w∈u(j)

Υ(a,w) ∪Ψ(a,w) if j ∈ Pa⋃︁
w∈u(j)

Υ(a,w) if j ∈ Fa ∧ e(a, u) = 1⋃︁
w∈u(j)

Ψ(a,w) if j ∈ Fa ∧ e(a, u) = 0

with Υ(a,w) = w′ such that

w′(F) = w(F)

w′(j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w(j) if j ∈ Oa⋃︁
v∈w(j)

Φ(a, v) if j ∈ Pa⋃︁
v∈w(j)

Υ(a, v) if j ∈ Fa ∧ T (j, i) = 0⋃︁
v∈w(j):e(a,v)=1

Υ(a, v) if j ∈ Fa ∧ T (j, i) = 1

and Ψ(a,w) = w′ such that

w′(F) = w(F)

w′(j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w(j) if j ∈ Oa⋃︁
v∈w(j)

Φ(a, v) if j ∈ Pa⋃︁
v∈w(j)

Ψ(a, v) if j ∈ Fa ∧ T (j, i) = 0⋃︁
v∈w(j):e(a,v)=0

Ψ(a, v) if j ∈ Fa ∧ T (j, i) = 1

for each agent j ∈ D(AG).

An Example of Execution As mentioned above, we will provide a graphical

representation of the newly introduced transition function. Let us remember that

70 3.1. Trust in mAρ

we will represent a possibility as a graph where the nodes correspond to the possible

worlds while the edges encode the beliefs of the agents. The thicker node represents

the pointed possibility. Moreover, to extract the point of view of the agents from

a graph we need to follow the entailment rules (Definition 2.11) starting from the

pointed possibility. In Planning Domain 3.1 we briefly describe the instance that

will be used as a running example. Since we are only interested in showing how to

e-state update works we will omit the actions and goal description.

Planning Domain 3.1: Trust-Grapevine

n ≥ 2 agents are located in k ≥ 2 rooms. Each agent knows j ≥ 0 secrets. An
agent can move freely to other rooms, and she/he can share a “secret” with the
agents that are in the room with her/him. Moreover, the agents will be aware
of the execution of announcements made in adjacent rooms without actually
knowing the truth value of the announced fluent. Each agent can or cannot
trust what another agent sharesa.

Our running example considers five agents: A, B, C, D, and E. Initially we
have that:

• A, B, C are located in the same room (room_1) while D is in a room
(room_2) adjacent to room_1 and E is located in room_3, not adjacent
to room_1;

• agents B and D trust A while C and E do not;

• only agent A knows secret_a;

• the value of secret_a is ⊤; and

• initially everyone knows the position of each agent and that only A knows
the value of secret_a.

In Figure 3.1 we present a graphical representation of the above described
initial state.

aLet us notice that since the idea of trust is involved, each agent, in order to learn a
secret, needs to witness an announcement of agents that she/he trusts, making the newly
presented domain slightly more intricate than the original Grapevine.

Figure 3.2 represents the e-state generated after the execution of the un-

trustworthy announcement action instance announce_secret_a⟨A⟩ (ann_a for

brevity). With ann_a, A announces the value of secret_a. Let us note that from

the position of the agents we know that A, B, C ∈ Fann_a, D ∈ Pann_a, and E ∈Oann_a.

3. Communication with Trust 71

Once again, from Figure 3.2, we can derive that B—a trusty fully observant—

believes secret_a to be true (⊤) while C—an untrusty fully observant—did not

change her/his direct belief about secret_a, but changed her/his beliefs on other

agents’, e.g., B, beliefs. More intricate relations, described in Proposition 3.1,

can also be derived from Figure 3.2.

s0 s1{B,C,D,E}{A,B,C,D,E} {A,B,C,D,E}

s0 secret_a, at_1_A, t_1_B, at_1_C, at_2_D, at_3_E
s1 at_1_A, t_1_B, at_1_C, at_2_D, at_3_E

Figure 3.1: The initial e-state described in Planning Domain 3.1. The bottom Table
presents the fluents interpretation of each possibility (as usual, only the positive fluents
are reported).

s0 s1{B,C,D,E}{A,B,C,D,E} {A,B,C,D,E}

t0 t1

{C,D}
{A,B,C,D}

u0 u1{C,D}
{A,B,C,D} {C,D}

{D}
{D} {D}

{D}

{A,B,C,D}

{C,D}
{A,B,C,D}

{E}

{E}

{E}

{E}

u0/t0/s0 secret_a, at_1_A, t_1_B, at_1_C, at_2_D, at_3_E
u1/t1/s1 at_1_A, t_1_B, at_1_C, at_2_D, at_3_E

Figure 3.2: The e-state obtained after executing the un-trustworthy announcement
action ann_a in the e-state represented in Figure 3.1.

72 3.1. Trust in mAρ

mis-Trustworthy Announcement

In Definition 3.2 we assumed that an agent j, when does not trust the announcer,

will not change her/his beliefs about what has been announced. That is, an untrusty

agent will not change her/his perspective on the “physical” state of the world. Let

us notice that this type of trust captures the idea that, for the untrusty agents,

the announcer is not reliable and the information she/he is providing is not worth

taking into consideration as it can be not accurate.

Depending on the scenario it could be necessary to model a stronger concept

of untrust. In particular, it could be required to design an un-trustworthy an-

nouncement such that the untrusty agents will believe the contrary of what has

been announced (while still believing that the announcer believes what she/he

announced). We will call this type of action mis-trustworthy announcement. The

formalization of such variation is presented in Definition 3.3.

Let us note that the transition functions introduced in Definition 3.2 and

Definition 3.3 only differ in the specification of Υ and Ψ for the untrusty fully

observant agents. This difference is needed to represent the fact that in the case of

an un-trustworthy announcement the untrusty agents maintain their beliefs while in

the mis-trustworthy one they will believe the opposite of what has been announced.

3. Communication with Trust 73

Definition 3.3: mAρ mis-Trustworthy Announcement

Let an action instance a⟨i⟩ ∈ D(AI) where agent i ∈ D(AG) announces the
fluent formula ϕ and a possibility u ∈ S be given.
If a is not executable in u, then Φ(a, u) = ∅ otherwise Φ(a, u) = u′, where:

e(a, u) =
⎧⎨⎩0 if u |= ϕ

1 if u |= ¬ϕ
u′(F) = u(F)

u′(j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(j) if j ∈ Oa⋃︁
w∈u(j)

Υ(a,w) ∪Ψ(a,w) if j ∈ Pa⋃︁
w∈u(j)

Υ(a,w) if j ∈ Fa ∧ e(a, u) = 1⋃︁
w∈u(j)

Ψ(a,w) if j ∈ Fa ∧ e(a, u) = 0

with Υ(a,w) = w′ such that

w′(F) = w(F)

w′(j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w(j) if j ∈ Oa⋃︁
v∈w(j)

Φ(a, v) if j ∈ Pa⋃︁
v∈w(j):e(a,v)=0

Υ(a, v) if j ∈ Fa ∧ T (j, i) = 0⋃︁
v∈w(j):e(a,v)=1

Υ(a, v) if j ∈ Fa ∧ T (j, i) = 1

and Ψ(a,w) = w′ such that

w′(F) = w(F)

w′(j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w(j) if j ∈ Oa⋃︁
v∈w(j)

Φ(a, v) if j ∈ Pa⋃︁
v∈w(j):e(a,v)=1

Ψ(a, v) if j ∈ Fa ∧ T (j, i) = 0⋃︁
v∈w(j):e(a,v)=0

Ψ(a, v) if j ∈ Fa ∧ T (j, i) = 1

for each agent j ∈ D(AG).

An Example of Execution As for the un-trustworthy announcement, we will

provide an example of mis-trustworthy announcement execution. The initial state is

identical to the one introduced in Planning Domain 3.1 . The only difference is that

74 3.1. Trust in mAρ

now the action announce_secret_a⟨A⟩ (or ann_a for brevity) is a mis-trustworthy

announcement instead of an un-trustworthy announcement. The initial state is,

therefore, represented in Figure 3.1 while the e-state obtained after the execution of

the mis-trustworthy announcement is shown in Figure 3.3. From Figure 3.3, we can

extrapolate that B—a trusty fully observant—believes secret_a to be true (⊤)

while C—an untrusty fully observant—believes the opposite, i.e., secret_a = ⊥.

As for the previous actions, also for mis-trustworthy announcement more intricate

relations, described in Proposition 3.2, can also be derived from Figure 3.3.

s0 s1{B,C,D,E}{A,B,C,D,E} {A,B,C,D,E}

t0 t1

{C,D}
{A,B,D}

u0 u1{C,D}
{A,B,D} {C,D}

{D}
{D} {D}

{D}

{A,B,D}

{C,D}
{A,B,D}

{E}

{E}

{E}

{E}

u0/t0/s0 secret_a, at_1_A, t_1_B, at_1_C, at_2_D, at_3_E
u1/t1/s1 at_1_A, t_1_B, at_1_C, at_2_D, at_3_E

Figure 3.3: The e-state obtained after executing the mis-trustworthy announcement
action ann_a in the e-state represented in Figure 3.1.

3.1.2 Desired Properties

In Section 2.2.2 some useful properties that correctly capture certain intuitions

concerning the effects of the various types of actions in mAρ are listed. Similarly,

in what follows, we will provide some properties that the e-state update, after

executing the un/mis-trustworthy announcement, meets. In Appendix A.3 we

will show the formal proofs that these properties hold. As usual, we will indicate

the sets of partially observant and oblivious agents (with respect to the action

3. Communication with Trust 75

instance a⟨i⟩) with Pa and Oa, respectively. Moreover, we will indicate the set

of trusty fully observant agents with Fa while will indicate the set of untrusty

fully observant with Ua.

Proposition 3.1: un-Trustworthy Announcement Properties

Let a⟨i⟩ be an un-trustworthy announcement action instance where an agent i
t_announces ϕ. Let e be an e-state and let e′ be its updated version (that is,
Φ(a, e) = e′), then in mAρ it holds that:

(1) e′ |= CFaϕ;

(2) e′ |= CUa(CFaϕ);

(3) e′ |= CPa(CFaϕ ∨CFa¬ϕ);

(4) e′ |= CFa∪Ua(CPa(CFaϕ ∨CFa¬ϕ));

(5) for every agent y ∈ Oa and a belief formula φ, e′ |= By(φ) iff e |= By(φ);
and

(6) for every pair of agents x ∈ Fa∪Ua∪Pa and y ∈ Oa and a belief formula
φ, if e |= Bx(By(φ)) then e′ |= Bx(By(φ)).

(7) for every agent y ∈ Ua, e′ |= By(ϕ)/By(¬ϕ)/(¬By(ϕ) ∧ ¬By(¬ϕ)) iff
e |= By(ϕ)/By(¬ϕ)/(¬By(ϕ) ∧ ¬By(¬ϕ));

The properties presented in Proposition 3.1 capture some fundamental aspects of

an un-trustworthy announcement action. Intuitively:

(1) Captures the idea that all the trusty fully observant agents should believe

(i) what has been announced; and (ii) that all the other trusty fully observant

agents believe what has been announced and so on ad infinitum (that is why

we use the C operator).

(2) Models the fact that all the untrusty agents believe that all the trusty ones

have common belief of what has been announced.

(3) Captures that the partially observants believe that the trusty fully observants

have common knowledge of what has been announced while the partially

observants themselves do not know the announced value.

76 3.1. Trust in mAρ

(4) States that the fully observant agents have common knowledge of the previous

property.

(5) Captures the fact that the oblivious agents do not change their beliefs.

(6) States that the observant agents (trusty, untrusty, and partial) believe that

the oblivious agents did not change their beliefs.

(7) Models the idea that all the untrusty agents do not modify their beliefs about

the announced values.

As we did for the un-trustworthy announcement, let us identify some properties

also for the mis-trustworthy announcement action.

Proposition 3.2: mis-Trustworthy Announcement Properties

Let a⟨i⟩ be a mis-trustworthy announcement action instance where an agent i
m_announces ϕ. Let e be an e-state and let e′ be its updated version (that
is, Φ(a, e) = e′), then in mAρ Items (1) to (6) of Proposition 3.1 hold. In
addition,

(8) e′ |= CUa¬ϕ;

(9) e′ |= CFa(CUa¬ϕ);

(10) e′ |= CPa(CUaϕ ∨CUa¬ϕ);

Proposition 3.2 describes the core ideas behind a mis-trustworthy announcement

action. While Items (1) to (6) of Proposition 3.1 have already been described,

the intuitive meaning of the remaining ones is as follows.

(8) Captures the idea that all the untrusty fully observant agents should believe

(i) the contrary of what has been announced; and (ii) that all the other untrusty

fully observant agents believe the negation of what has been announced and

so on ad infinitum (that is why we use the C operator).

(9) Models the fact that all the trusty agents believe that all the untrusty ones

have common belief of the negation of what has been announced.

3. Communication with Trust 77

(10) Captures that the partially observants believe that the untrusty fully obser-

vants have common belief of what has been announced, while the partially

observant themselves do not know the announced value.

3.2 Capturing Trust with Update Models

Since most of the work in dynamic epistemic planning revolves around the concepts

of Kripke structures and update models, e.g., Bolander and Andersen [2011], Baral

et al. [2022], we believe that formalizing the aforementioned actions using these

concepts would provide interesting insights for the community. In this paragraph

we, therefore, succinctly present the update models that define the announcement

actions where the trust relation T is taken into consideration.

3.2.1 mA∗ un-Trustworthy Announcement

Let us begin by describing the update model related to the un-trustworthy an-

nouncement for the language mA∗. We will follow the scheme presented by Baral

et al. [2015, 2022] to introduce a new action’s update model. The transition function

is derived by applying the update model to a Kripke structure. Let us also recall

that the sets Fa,Pa,Oa represent the set of fully observant, partially observant, and

oblivious agents with respect to an action instance a⟨i⟩, respectively. Definition 3.4

presents formally the update model of an un-trustworthy announcement. Let us

notice that an update instance of an un-trustworthy announcement action occurrence

has five events to capture the idea of both updating the beliefs of the trusty agents

and maintaining the beliefs of the untrusty ones. Figure 3.4 provides a graphical

representation of this update template. Each event is associated with sets of states

and edges where the truth value of the announced fluent formula is either known

to be true, known to be false, or unknown.

78 3.2. Capturing Trust with Update Models

Definition 3.4: mA∗ un-trustworthy announcement Update Model

Let a⟨i⟩ be an un-trustworthy announcement action instance where agent
i announces the fluent formula ϕ with the precondition ψ, a function T :
AG × AG ↦→ {0, 1} and a frame of reference ρ = (Fa,Pa,Oa). The update
model for a, T , and ρ, ω(a, T , ρ), is defined by ⟨Σ,R1, . . . ,Rn⟩ where:

• Σ = {σ, τ, η, µ, ϵ};

• Rj is defined by:

Rj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(σ, σ), (τ, τ), (ϵ, ϵ)} if i ∈ Fa ∧ T (j, i) = 1

{(x, x′), (y, y′), (ϵ, ϵ)} if i ∈ Fa ∧ T (j, i) = 0
where x, x′ ∈ {σ, η} ∧ y, y′ ∈ {µ, τ}

{(x, y), (ϵ, ϵ)} if j ∈ Pa

where x, y ∈ {σ, τ, η, µ}

{(x, ϵ), (ϵ, ϵ)} if j ∈ Oa

where x ∈ {σ, τ, η, µ}

• The preconditions are are defined by:

pre(x) =

⎧⎪⎪⎨⎪⎪⎩
ψ ∧ ϕ if x ∈ {σ, µ}
ψ ∧ ¬ϕ if x ∈ {η, τ}
⊤ if x = ϵ

• sub is defined by sub(x) = ∅ for each x ∈ Σ.

• We identify σ as the pointed event.

The update instance for the un-trustworthy announcement action occurrence
a and the frame of reference ρ is (ω(a, T , ρ), {σ, τ, η, µ}).

3. Communication with Trust 79

σ η

µ τ

ϵ

{O}

{O}

{O}

{O}
{P}

{P}{P}
{P}

{U,P}

{U,P}

{U,P}

{U,P}

{F,U,P}

{F,U,P}

{F;U;P}

{F,U,P}

{F,U,P,O}

Figure 3.4: The update template (Σ, σ) for the un-trustworthy announcement. F, U,
P, O represent the trusty fully observant, untrusty fully observant, partially observant,
and oblivious agents respectively.

3.2.2 mA∗ mis-Trustworthy Announcement

Let us now introduce the transition function related to the mis-trustworthy an-

nouncement action. As before, we will follow the scheme of Baral et al. [2015,

2022] to introduce a new action’s update model, and the sets Fa,Pa,Oa represent

the set of fully observant, partially observant, and oblivious agents with respect

to an action instance a⟨i⟩, respectively.

Let us note that Definition 3.5 only varies, with respect to Definition 3.4, in the

behavior of Rj for the untrusty fully observant agents (i.e., j ∈ Fa ∧ T (j, i) = 0).

80 3.2. Capturing Trust with Update Models

Definition 3.5: mA∗ mis-trustworthy announcement Update Model

Let a⟨i⟩ be an mis-trustworthy announcement action instance where agent
i announces the fluent formula ϕ with the precondition ψ, a function T :
AG × AG ↦→ {0, 1} and a frame of reference ρ = (Fa,Pa,Oa). The update
model for a, T , and ρ, ω(a, T , ρ), is defined by ⟨Σ,R1, . . . ,Rn⟩ where:

• Σ = {σ, τ, η, µ, ϵ};

• Ri is defined by:

Rj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(σ, σ), (τ, τ), (ϵ, ϵ)} if i ∈ Fa ∧ T (j, i) = 1

{(η, η), (µ, µ), (ϵ, ϵ)} if i ∈ Fa ∧ T (j, i) = 0
where x, x′ ∈ {σ, η} ∧ y, y′ ∈ {µ, τ}

{(x, y), (ϵ, ϵ)} if j ∈ Pa

where x, y ∈ {σ, τ, η, µ}

{(x, ϵ), (ϵ, ϵ)} if j ∈ Oa

where x ∈ {σ, τ, η, µ}

• The preconditions are are defined by:

pre(x) =

⎧⎪⎪⎨⎪⎪⎩
ψ ∧ ϕ if x ∈ {σ, µ}
ψ ∧ ¬ϕ if x ∈ {η, τ}
⊤ if x = ϵ

• sub is defined by sub(x) = ∅ for each x ∈ Σ.

• We identify σ as the pointed event.

The update instance for the mis-trustworthy announcement action occurrence
a and the frame of reference ρ is (ω(a, T , ρ), {σ, τ, η, µ}).

The update template for mis-trustworthy announcement is presented in Figure 3.5.

3. Communication with Trust 81

σ η

µ τ

ϵ

{O}

{O}

{O}

{O}
{P}

{P}{P}
{P}

{U,P}

{U,P}

{U,P}

{U,P}

{F,P}

{F,P}

{F,P}

{F,P}

{F,U,P,O}

Figure 3.5: The update template (Σ, σ) for the mis-trustworthy announcement. F, U,
P, O represent the trusty fully observant, untrusty fully observant, partially observant,
and oblivious agents respectively.

82

People get built different. We don’t need to figure it
out, we just need to respect it.

— Princess Bubblegum
in “Bonnie and Neddy”

Adventure Time

4
Trust, Misconception, and Lies in MEP

Contents
4.1 Agents’ Attitudes and Inconsistent Beliefs 83

4.1.1 Enriched Domains . 85
4.2 Updated Transition Function 87

4.2.1 Examples of Actions Execution 92
4.2.2 Desired Properties . 99

4.3 Related Work . 100

4.1 Agents’ Attitudes and Inconsistent Beliefs

In the previous chapter, we presented a formalization for announcements when the

concept of trust is taken into consideration. While this introduction expands the

range of scenarios that mAρ may represent, it still does not fully capture aspects

like dishonesty, deception, and incongruent beliefs.

In this chapter, we further enrich the language mAρ with the concept of agents’

attitudes. Our idea of attitudes stems from the concept of dynamic attitudes

that “represent the agent’s assessment of the reliability of the source” introduced

by Rodenhäuser [2014]. We define basic attitudes that capture how an agent

reacts when another agent is informing her/him about something. In the real

world, in fact, it is often the case that we associate an idea of reliability with

83

84 4.1. Agents’ Attitudes and Inconsistent Beliefs

an information source. This work captures this idea by having agents behave

accordingly to the following attitudes: doubtful, impassive, trustful, mistrustful,

or stubborn (detailed descriptions are given later).

In addition to the agents’ relation with the information source, we also consider

the scenario when agents learn a fact that discords with their previous beliefs.

When such a discrepancy arises, we talk about inconsistent belief. Since, as said in

Chapter 2, we consider KD45n-states, inconsistencies are relative only to the beliefs

of an agent (and not to the actual world). Let us assume that agent i believes that

¬φ is the case in the e-state u (i.e., u |= Bi(¬φ)); in mAρ there are two main sources

of inconsistencies: (i) i observes the real world—performing a sensing action—and

learns φ (the opposite of what she/he believed); (ii) i learns φ as a result of an

announcement performed by another agent j. In both scenarios, we must account

for the belief of i after the action execution. In particular, the resulting e-state

u′ must be consistent with the axiom D of Table 1.1. In the former case, (i) we

resolve the inconsistency by having i believing φ; i.e., we make sure that u′ |= Bi(φ).

This is a reasonable solution, as we assume that agents trust their senses when

observing the world. In the latter, (ii) we must take into account the attitude of

the agent with respect to the announcer j. As said by Rodenhäuser [2014], “we

are not only interested in the acceptance of new information (based on trust), but

also in its rejection (based on distrust)”. For instance, the listener may be skeptical

or credulous, and thus she/he would change her/his belief according to her/his

attitude. Let us notice that inconsistent beliefs are different from false beliefs. An

agent has a false belief about a property φ if she/he believes φ to be true even if

such property does not hold in the actual world. False beliefs are already allowed

in mAρ as a result of the presence of oblivious agents in action instances.

Going back to the attitudes of agents, the notion of trust naturally arises. It

is reasonable to assume that the listener i believes the announcer j if i trusts j. In

particular, let us consider three attitudes1 for fully observant agents that listen

to an announcement: trustful, mistrustful, and stubborn. Trustful agents believe
1We only consider basics attitudes, we leave the exploration of more complex ones as future

work.

4. Trust, Misconception, and Lies in MEP 85

what the announcer tells them; mistrustful agents believe the opposite of what is

announced; and stubborn agents do not modify their beliefs. Considering the case

of semi-private announcements, we need to introduce the concept of attitude for

partially observant agents as well. Specifically, we consider impassive and doubtful

agents. Impassive agents keep their current beliefs, while doubtful agents believe

neither what is being announced nor the opposite, regardless of their previous

beliefs. Note that stubborn and impassive agents are different, as the former kind is

aware of what is being announced—i.e., the truth value of the property φ. Let us

note that such attitudes are named to capture our personal idea of the behavior

they represent and they are not meant to wholly describe the nuances of complex

social attitudes such as, for example, stubbornness.

When communicating with their peers, agents might announce something that is

false relative to their own point of view. We call lies such announcements. Similar

to the notion of inconsistent belief, the truthfulness of announcements depends on

the point of view of the announcer i—i.e., i truthfully announces φ iff u |= Bi(φ).

Introducing these novel concepts enriches mAρ in terms of what the actions

may describe/perform. The language can describe a much broader set of real-life

scenarios where different degrees of trust relations between agents are needed. In

summary, in this chapter we present, to the best of our knowledge, the first transition

function that can update an epistemic state—i.e., the knowledge/belief-graph of the

agents—when considering: (i) inconsistent beliefs, i.e., discrepancies between the

beliefs currently held by an agent and some new information that she/he acquires;

(ii) trust relations between agents; and (iii) the possibility for an agent to lie. In

the next section, we formally incorporate such features in the semantics of mAρ.

4.1.1 Enriched Domains

Let us start by providing some definitions necessary to introduce the updated

transition function for mAρ. In particular, let us formally introduce the idea

of frame of reference in Definition 4.1, the concept of attitude in Definition 4.2

and finally the MEP domain enriched with attitudes in Definition 4.3. In what

86 4.1. Agents’ Attitudes and Inconsistent Beliefs

follows, when clear from the context, we will make use of a to indicate the action

instance a⟨α⟩, with α ⊆ D(AG).

Definition 4.1: Frame of Reference [Baral et al., 2015]

The frame of reference of an action instance a⟨α⟩ is a partition ρa⟨α⟩ =
⟨Fa,Pa,Oa⟩ of the set D(AG), denoting the Fully observant, Partially obser-
vant, and Oblivious agents of a⟨α⟩, respectively.

The concept of attitude is strictly related to announcements. Therefore, in

what follows, a⟨α⟩ is assumed to be an announcement action. We recall that

announcement action instances are assumed to have a single executor (|α| = 1),

referred to as the announcer. In this case, we make use of the short notation

a⟨j⟩ in place of a⟨{j}⟩.

Definition 4.2: Attitude

The attitude of an agent determines how she/he updates her/his beliefs when
new information is announced. Attitudes induce a refined partition of the
frame of reference ρa⟨j⟩ = ⟨Fa,Pa,Oa⟩ as follows:

• Fa = {j} ∪ Ta ∪Ma ∪ Sa: fully observant agents may be the executor,
Trustful, Mistrustful, or Stubborn;

• Pa = Ia ∪Da: partially observant agents may be Impassive or Doubtful.

Attitudes are specified with mAρ statements of the form “has_attitude i wrt j

att if φ” (where att is one of the attitudes of Definition 4.2) and they define the

trust relations among agents. Such a statement asserts that i bears the attitude

att towards j if the condition φ is met. We assume that the attitudes of the agents

are publicly visible, except for the attitude that the announcer has with respect

to her/him-self. That is, the announcer knows whether she/he is being truthful,

lying or announcing something that she/he is unaware of, while other agents do

not. Instead, trustful and stubborn agents believe that the announcer is truthful

(i.e., they believe that the executor believes the announced property), whereas

mistrustful agents believe the announcer to be lying (i.e., they believe that the

announcer believes the negation of the announced property). In what follows we

4. Trust, Misconception, and Lies in MEP 87

assume this schema of trust with respect to the executor, although it can be easily

adapted to best represent different scenarios. Finally, we assume that the announcer

does not modify her/his own beliefs about the property being announced. The

considered attitudes provide agents with a simple set of possible behaviors. More

sophisticated attitudes can be built upon the ones introduced in Definition 4.2.

Definition 4.3: MEP Domain with Attitudes

A MEP domain with attitudes is a tuple D = ⟨F ,AG,A,AT , φini, φgoal⟩, where
the additional element AT contains the attitudes relations of agents:

AT = {(i, j, att, φ) | [has_attitude i wrt j att if φ]}.

4.2 Updated Transition Function

In this section, we provide a formalization of the transition function Φ of mAρ that

captures the aspects that we previously discussed in this section. Let a MEP domain

with attitudes D = ⟨F ,AG,A,AT , φini, φgoal⟩, an agent j ∈ D(AG), an e-state

u ∈ D(S), and an action instance a ∈ D(AI) be given. The frame of reference

ρa and the attitudes of the agents are determined by confronting the elements of

the attitudes relation AT with the possibility u. If a is not executable in u, then

Φ(a, u) = ∅. Otherwise, we distinguish between ontic and epistemic actions.

Ontic Actions Since ontic actions are not affected by the introduction of incon-

sistent beliefs, or attitudes, the previous formalization described in Definition 2.12

is maintained.

Epistemic Actions Sensing and announcement actions modify the beliefs of

agents. Since agents might acquire information that discords with previous beliefs,

we must resolve the discrepancies. In the case of sensing actions, we consider all

fully observant agents as executors. Since each agent trusts her/his senses, we have

Fa = Ta. Similarly, we assume partially observant agents to keep their beliefs about

88 4.2. Updated Transition Function

the physical features of the world unchanged, i.e., Pa = Ia. Hence, the refined

frame of reference of sensing actions is ρa⟨Ta⟩ = ⟨Ta, Ia,Oa⟩.

In the case of announcement actions, it is necessary to state both the executor

j ∈ D(AG) and the attitudes to resolve inconsistent beliefs. Therefore, the frame of

reference of announcement actions is ρa⟨j⟩ = ⟨({j},Ta,Ma,Sa), (Ia,Da),Oa⟩. During

the computation of the update, the attitude of the announcer j is set to match the

perspective of the agent being currently handled by the transition function. In

particular, as mentioned before, the announcer considers her/him-self stubborn;

given that the announcement does not intact her/his beliefs about the truth value of

the announced property. On the other hand, trustful and stubborn agents consider

the announcer to be truthful; and mistrustful agents consider the announcer to be

lying. Notice that the announcer is aware of the perspectives of others on her/his

attitude, and so are the remaining agents. Assuming private points of view on

the agents’ attitudes brings an extra overhead to the problem and, therefore, we

will address this issue in future works.

Let us note that the actions’ effects are assumed to be deterministic. This

assumption can be relaxed, as shown by Kuter et al. [2008]. Nonetheless, this would

generate a significant performance overhead that would render the planning process

unfeasible, most of the time. Given that the interest of the epistemic planning

community lies in trying to capture the agents’ information relations, we leave the

formalization of non-deterministic actions as future work.

We assume the presence of a unique statement that describes the effects of an

epistemic action. Namely, we allow to sense/announce a single literal at a time.

Therefore, we assume the presence of a unique fluent literal that describes the

effects of epistemic actions to further avoid non-determinism. This limitation is

necessary as the presented transition function of epistemic actions considers the

negation of the effects that, if defined as a conjunction, would generate a disjunctive

form (i.e., non-deterministic effects). As mentioned above, we decided to avoid non-

determinism considering the already poor scalability of MEP problems even without

it. Nonetheless, relaxing this restriction would allow to represent domains in which

4. Trust, Misconception, and Lies in MEP 89

sensing/announcing fluent formulae might be central. Conversely, ontic actions are

not subject to this restriction and, therefore, can affect conjunctions of literals.

Let ℓ be the (unique) fluent literal such that [a senses/announces ℓ] ∈ D.

With a slight abuse of notation, we define the value of ℓ in a possibility w as

val(a,w) = w(ℓ). The effect e(a) of action a is equal to 1 if ℓ is a positive fluent

literal (e(a) = 0, otherwise). We use the following simplifications: given a possibility

p, (i) p′ denotes the updated version of p; and (ii) if not stated otherwise, we

consider p′(F) = p(F). For clarity, we briefly describe each component of the

transition function after its definition.

Definition 4.4: Epistemic Actions with Attitude in mAρ

Let i be an agent (i.e., i ∈ D(AG)). Applying an epistemic action instance a on
the pointed possibility u results in the updated pointed possibility Φ(a, u) = u′

such that:

u′(i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(i) if i ∈ Oa

P(a, u) if i ∈ Pa

F(a, u, 1) if i ∈ Ta

F(a, u, 0) if i ∈Ma

S(a, u, e(a), 1) if i ∈ Sa

S(a, u, e(a), 0) if i = j

where P, F, S are defined below.

Description: Φ modifies the beliefs of each agent on the announced fluent
with respect to her/his attitude. For instance, the beliefs of trustful agents are
updated by the sub-function F. Each sub-function (P, F, S) updates the nested
beliefs of the agents, i.e., the beliefs that the agents have of others’ perspectives.

Helper functions χ and χ̄

We first define the helper functions χ and χ̄. Let w′
x = χ(a,w, x) and w̄′

x =
χ̄(a,w, x̄) where: (i) w′

x and w̄′
x represent the possibility w updated with χ and

χ̄, respectively; (ii) x and x̄ represent opposite Boolean values s.t. x = ¬x̄; and
(iii) let b be 1 and 0 when executing χ and χ̄, respectively. Then w′

x and w̄′
x

are defined as follows:

w′
x(ℓ) =

⎧⎨⎩x if ℓ = f
u(ℓ) otherwise

w̄′
x(ℓ) =

⎧⎨⎩x̄ if ℓ = f
u(ℓ) otherwise

90 4.2. Updated Transition Function

w′
x(i)

w̄′
x(i)

⎫⎪⎪⎬⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w(i) if i ∈ Oa

P(a,w) if i ∈ Pa⋃︁
v∈w(i)

χ(a, v, x) if i ∈ Ta ∨ (i = j ∧=1)⋃︁
v∈w(i)

χ̄(a, v, x̄) if i ∈Ma ∨ (i = j ∧=0)

S(a,w, x, 1) if i ∈ Sa

Description: Functions χ and χ̄ recursively update the nested beliefs of
trustful and mistrustful agents (the cases of other attitudes are delegated to
the respective sub-functions). However, they do not correspond to trustful
and mistrustful attitudes. The functions χ and χ̄ are exploited by P and F/S
by specifying the correct value of x to guarantee the correct update of the
beliefs of partially and fully observant agents, respectively. We make use of
two Boolean variables: (i) x encodes the truth value of ℓ believed by i; (ii) b is
a flag that keeps track of whether i is trustful (b = 1) or mistrustful (b = 0)
with respect to the announcer.

Sub-function P
Let w′

p = P(a,w). Then:

w′
p(i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w(i) if i ∈ Oa⋃︁
v∈w(i)

P(a, v) if i ∈ Ia⋃︁
v∈w(i)

χ(a, v, 0) ∪ χ(a, v, 1) if i ∈ Da⋃︁
v∈w(i)

χ(a, v, val(a, v)) if i ∈ Ta ∪Ma ∪ {j}⋃︁
v∈w(i)

S(a, v, val(a, v), 1) if i ∈ Sa

Description: Function P updates the beliefs of partially observant agents. It
updates their “direct beliefs” (i.e., that represent their point of view) on ℓ and
the nested beliefs of fully observant agents (by calling χ with x = val(a,w)).
This guarantees that agents in Pa believe that (mis)trustful agents are aware
of the action’s effect. For doubtful agents χ is executed with both x = 0 and
x = 1, forcing them to be ignorant about ℓ.

4. Trust, Misconception, and Lies in MEP 91

Sub-function F
Let w′

f = F(a,w, b). Then:

w′
f(i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w(i) if i ∈ Oa

P(a,w) if i ∈ Pa⋃︁
v∈w(i)

χ(a, v, e(a)) if i ∈ Ta ∨ (i = j ∧=1)⋃︁
v∈w(i)

χ̄(a, v,¬e(a)) if i ∈Ma ∨ (i = j ∧=0)⋃︁
v∈w(i)

S(a, v, e(a), 1) if i ∈ Sa

Description: Function F updates the point of views on ℓ of trustful and
mistrustful agents, calling χ and χ̄, respectively. Moreover, F deals with the
beliefs of other agents with respect to to (mis)trustful agents. The flag b keeps
track of whether F is executed from the perspective of a trustful (b = 1) or a
mistrustful (b = 0) agent allowing to update i’s perspective on the beliefs of
the announcer.

Sub-function S
Let w′

s = S(a,w, x, s). Then:

w′
s(i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w(i) if i ∈ Oa

P(a,w) if i ∈ Pa⋃︁
v∈w(i)

χ(a, v, x) if i ∈ Ta ∨ (i = j ∧ s = 1)⋃︁
v∈w(i)

χ̄(a, v,¬x) if i ∈Ma⋃︁
v∈w(i)

S(a, v, x, s) if i ∈ Sa ∨ (i = j ∧ s = 0)

Description: Function S keeps the “direct” beliefs of the executor and
stubborn agents unchanged and it updates their perspective on other agents’
beliefs. Here, we make use of two Boolean variables: (i) x is defined as in χ/χ̄;
(ii) s is used to identify whether the function has been called by a stubborn
agent (s = 1) or if it is updating the “direct” beliefs of the executor (s = 0).

While Definition 4.4 formally defines how an e-state is updated after the execution

of an epistemic action when agents’ attitudes are considered, let us present its

intuitive meaning. Let a be an announcement action (a sensing action can be thought

of as a special case of an announcement). The point of view of oblivious agents

remains untouched. Since a is an epistemic action, the fluents of the pointed world

u′ are unchanged with respect to its previous version u. On the other hand, trustful

agents’ points of view are changed to fit the announced property ℓ; mistrustful

92 4.2. Updated Transition Function

agents believe the opposite of what is announced; stubborn and impassive agents do

not change their belief on ℓ. The perspective of doubtful agents is built by including

also the opposite point of view with respect to ℓ. Higher-order beliefs are also

correctly updated as stated in Proposition 4.1. Fully observant agents are aware

of how each agent updates her/his beliefs. That is, they update the information

states of other agents according to the attitudes of the other: (i) impassive agents

do not change their belief on ℓ; (ii) doubtful agents no longer hold any belief on ℓ;

and (iii) fully observant agents change their belief on ℓ as described above.

The information states of partially observant agents are updated similarly. The

main difference lies in the fact that they are not aware of how fully observant

agents update their points of view. Hence, partially observant agents maintain their

perspective on the beliefs of fully observant agents unchanged.

Finally, the announcer considers her/him-self stubborn, since the announcement

does not intact her/his beliefs, while other agents derive the attitude of the announcer

depending on their own. As mentioned before, trustful and stubborn agents consider

the announcer to be truthful, while mistrustful agents consider the announcer to

be lying. Notice that the announcer is aware of the other agents’ perspective

on her/his attitude.

4.2.1 Examples of Actions Execution

In this section, we will show some examples of execution to better illustrate how

the newly introduced transition function works. When needed we will describe

the agents’ attitudes. We will present, through labeled graphs, the e-state before

and after the update for each example. While to capture all the combinations of

attitudes we would need a far larger number of examples, we decided to provide

only those that show the fundamental attitudes behavior and interactions. All

the examples will be based on a simple variation of the Coin in the Box domain.

Before presenting the examples of execution let us introduce the Rigged Coin in

the Box in Planning Domain 4.1.

4. Trust, Misconception, and Lies in MEP 93

Planning Domain 4.1: Rigged Coin in the Box

Five agents, l,m, r, s, c, are inside a room containing a box. Agents l,m stand
to the left of the box; r, s are at the box’s right, and c is positioned in front
of the box. Inside the box, agent c placed a rigged coin. Any agent might
peek (sensing action) inside the box to learn the coin position. Since the coin
is rigged, the actual position (either tails or heads up) is only visible when
an agent is standing in front of the box (i.e., c) or at its right (i.e., r and
s). On the other hand, any agent that stands at the box’s left (i.e., l and m)
will always see the coin facing tails up. All the agents can share information
through the action announce(position) (announcement action) that allows
them to announce the position of the coin.

For the sake of readability, in all the following examples, we will use the same

initial e-state while varying the agents’ attitudes and the executed action. Let

us now explain the initial configuration in Example 4.1 and then illustrate the

corresponding e-state, in Figure 4.1, that from now on will be identified with u. A

reminder on how to “read” an e-state graphical representation is presented right

after the following initial e-state description.

Example 4.1: The Initial Configuration In our initial configuration we
assume that is common belief that agents l, m, r, and s do not know the coin
position, i.e., CD(AG)(¬Bi(heads) ∧ ¬Bi(¬heads)) with i ∈ {l,m, r, s}. On the
other hand, agent c is aware of the coin position and the other agents know
this, that is, in our initial e-state it holds CD(AG)(Bc(heads) ∨Bc(¬heads)).
Assuming that the coin position is heads up the graphical representation of
this e-state is as follows.

¬heads heads
{c, l, m, r, s}{c, l, m, r, s} {l, m, r, s}

Figure 4.1: The initial e-state u of Planning Domain 4.1.

Before exploring the examples, let us briefly recall how to interpret the graphical

representation of e-states. Consider Figure 4.1. The bold-lined world represents

the actual world. If a world u is connected by an edge labeled with agent i to a

world v, this means that in the world u agent i believes v to be possible.

94 4.2. Updated Transition Function

In the initial state, each agent, except c, admits both the worlds where heads

holds and where ¬heads holds. This means that such agents are uncertain about

the coin position. On the other hand, agent c does know the actual configuration

of the coin. We can understand this because in the actual world c admits only

the world where heads hold.

Finally, observe that the remaining agents do not know what c knows. In fact,

the formula Bm(Bc(heads)) ∨Bc(¬heads) is true. On the other hand, the formula

Bm(Bc(heads)) does not hold in the initial state.

Example 4.2: Correct Sensing This example shows how u is updated
after the execution of the action instance peek⟨{r, s}⟩. As said in Planning
Domain 4.1 both the agents r and s are able to correctly determine whether
the coin lies tails or heads up. Since we are executing a sensing action we are
only interested in defining the oblivious, the fully, and the partially observant
agents. In particular, for this action instance, we assume r and s to be fully
observant, l and m to be partially observant and c to be oblivious. As we can
see in the resulting e-state (Figure 4.2) r and s believe that the coin lies heads
up. Moreover, l and m still do not know the coin position but believe that r
and s know it. Finally, being c oblivious, she did not change her beliefs about
anything.

¬heads

{l, m}

heads
{c, l, m, r, s}{c, l, m, r, s}

{c} {c}

¬heads

{l, m, r, s} {l, m, r, s}

heads

{l, m, r, s}

Figure 4.2: The e-state u′ obtained after the execution of correct sensing on u.

4. Trust, Misconception, and Lies in MEP 95

Example 4.3: Wrong Sensing This example shows how u is updated
after the execution of the action instance peek⟨{l,m}⟩. As said in Planning
Domain 4.1 both the agents l and m always see the coin lying tails up. Since we
are executing a sensing action we are only interested in defining the oblivious,
the fully, and the partially observant agents. In particular, for this action
instance, we assume l and m to be fully observant, r and s to be partially
observant and c to be oblivious. As we can see in the resulting e-state
(Figure 4.3) l and m believe that the coin lies tails up. Moreover, r and s
still do not know the coin position but believe that l and m know it. Finally,
being c oblivious, she did not change her beliefs about anything.

¬heads

{r, s}

heads
{c, l, m, r, s}{c, l, m, r, s}

{c} {c}

¬heads

{l, m, r, s} {l, m, r, s}

heads

{l, m, r, s}

heads

{c}

{r, s}{l, m, r, s}

Figure 4.3: The e-state u′ obtained after the execution of wrong sensing on u.

96 4.2. Updated Transition Function

Example 4.4: Trust & Mistrust This example shows how u is updated
after the execution of the action instance announce⟨c⟩ where c announces
heads. In particular, for this action instance, we assume:

• c to be the executor ;

• l to be trustful;

• m to be mistrustful;

• r to be impassive; and

• s to be doubtful;

As we can see in the resulting e-state (Figure 4.4) l and m believe that the coin
lies heads and tails up, respectively. Moreover, l and m believe that c shares
their beliefs on the coin position. Finally, agents r and s, still do not know the
coin position but believe that c, l, and m know it.

{r, s}
¬heads

{c, l, m, r, s}

heads

{r, s} {r, s}
{r, s}{r, s}

¬heads
{c, l}

heads
{m}
{l}

{c, m}

{c, l, m, r, s}

Figure 4.4: The e-state u′ obtained after the announcement of heads in u with
trustful & mistrustful listeners.

4. Trust, Misconception, and Lies in MEP 97

Example 4.5: (Mis)Trust & Stubbornness This example shows how
u is updated after the execution of the action instance announce⟨c⟩ where c
announces heads. Differently from the previous example, the agents’ attitudes
are as follows:

• c to be the executor ;

• l to be trustful;

• m to be mistrustful;

• r to be doubtful; and

• s to be stubborn;

As we can see in the resulting e-state (Figure 4.5) agents c and l believe that
the coin lies heads up while m thinks that it lies tails up. Even if s did not
change her beliefs on the coin position she knows what c, l believe that the
coin is heads up while m think that it is tails up. Agent r, instead still does
not know the coin position but believes that c, l, and m know it. We will use a
dotted square to indicate that the edges that reach such a square, transitively
reach all the worlds contained.

¬heads

{s}

heads
{c, l, m, r, s}{c, l, m, r, s}

{r} {r}

¬heads

{s} {s}

heads

{r, s}

{s}

{s}

¬heads
{c, l}

heads
{m}
{l}

{r} {r}

{c, m}

{m}
{s}
{c, l}

{s}{c, l} {m}

Figure 4.5: The e-state u′ obtained after the announcement of heads in u with
(mis)trustful & stubborn listeners.

98 4.2. Updated Transition Function

Example 4.6: Lie This example shows how u is updated after the execution
of the action instance announce⟨c⟩ where c announces ¬heads. Let us note
that this announcement, since it is performed by c that believes heads, is a lie.
For this action instance, we assume:

• c to be the executor ;

• l to be trustful;

• m to be mistrustful;

• r to be doubtful; and

• s to be oblivious;

As we can see in the resulting e-state (Figure 4.6) agent l believed to the lie and
now has a wrong belief about the coin position. On the other hand and m did
not believe the announcer and, therefore, now correctly think that the coin lies
heads up. Being the executor, c knew that she was lying and, therefore, still
believes that the coin is heads up. Moreover, l and m believe that c shares their
beliefs on the coin position. Agents r, still does not know the coin position but
believe that c, l, and m know it. Finally, being s oblivious, she did not change
her beliefs about anything.

¬heads

{r}

heads
{c, l, m, r, s}{c, l, m, r, s}

{s} {s}

¬heads

{c, l, m, r} {c, l, m, r}

heads

{l, m, r, s}

{r} {r}
{r}{r}

¬heads
{c, m}

heads
{l}
{m}

{s} {s}

{c, l}

Figure 4.6: The e-state u′ obtained after the execution of a lie (i.e., c announce
¬heads) in u with trustful & mistrustful listeners.

4. Trust, Misconception, and Lies in MEP 99

4.2.2 Desired Properties

Following the usual schema, we list some properties concerning the new actions

that consider attitudes. Complete proofs are available in Appendix A.4.

Proposition 4.1: Epistemic Actions Properties

Let a⟨j⟩ be an epistemic action instance such that j announces ℓ (where ℓ
is either f or ¬f). Let u be an e-state and let u′ be its updated version, i.e.,
Φ(a, u) = u′, then it holds that:

(1) u′ |= CFa(CTa(ℓ ∧Bj(ℓ)));

(2) u′ |= CFa(CMa(¬ℓ ∧Bj(¬ℓ)));

(3) ∀i ∈ (Sa ∪ {j}), u′ |= φ if u |= φ with φ ∈ {Bi(ℓ); Bi(¬ℓ); (¬Bi(ℓ) ∧
¬Bi(¬ℓ))};

(4) ∀i ∈ Fa, u′ |= CPa(Bi(ℓ) ∨Bi(¬ℓ));

(5) ∀i ∈ Da, u′ |= CFa∪Pa(¬Bi(ℓ) ∧ ¬Bi(¬ℓ));

(6) for every pair of agents i ∈ D(AG) and o ∈ Oa, and a belief formula φ,
u′ |= Bi(Bo(φ)) if u |= Bi(Bo(φ)).

The features presented in Proposition 4.1 capture fundamental aspects of the

updated e-state after the execution of an announcement. Intuitively, they model

the following properties:

(1) Fully observant agents think that trustful agents believe that the announced

property holds and that the announcer believes such property;

(2) Fully observant agents think that mistrustful agents believe that the announced

property does not hold and that the announcer does not believe such property;

(3) Stubborn agents and the announcer do not modify their beliefs about the

announced property.

(4) Partially observant agents believe that fully observant agents (including the

announcer) are certain of the value of the announced property;

100 4.3. Related Work

(5) Non-oblivious agents believe that doubtful agents are uncertain on the truth

value of the announced property;

(6) Every agent (even oblivious agents) knows that oblivious agents do not change

their beliefs.

4.3 Related Work

The enriched semantics of mAρ has been implemented in the C++ solver EFP

(presented in chapter 5) that is now able to tackle families of problems that consider

complex aspects such as doxastic reasoning, lying agents, faulty perception, etc.

To the best of our knowledge, in the literature, only one other solver, RP-

MEP [Muise et al., 2015], can tackle such domains. This solver firstly encodes

a MEP problem into a classical planning problem and then handles the solving

phase with a “classical” planner. The key difference between EFP and RP-MEP

is that while RP-MEP grounds the agents’ beliefs and reasons on them as if they

were “static facts”, EFP builds and interprets e-states, and it updates them using

a full-fledged epistemic transition function. For this reason, the latter constitutes

a more comprehensive framework. In fact, given the effects of an action instance

(a single literal/conjunction of literals), the transition function of mAρ propagates

the effects and updates the nested beliefs of agents automatically. Conversely,

RP-MEP needs the propagated effects to be explicit. Nonetheless, the “implicit

beliefs update” of EFP makes this approach less performing with respect to RP-

MEP. The latter, in fact, with a little extra effort on the input description, is

able to solve the same domains as EFP, outperforming it whenever the depth of

the formulae is set to a reasonable number.

Other theoretical approaches explore the idea of trust between agents [Castel-

franchi and Falcone, 1998, Herzig et al., 2010, Rodenhäuser, 2014]. For example,

following Castelfranchi and Falcone [1998], Herzig et al. devised a logic to capture

the “truster’s belief about certain relevant properties of the trustee with respect to

a given goal”. While the ideas of Castelfranchi and Falcone are elegantly captures

4. Trust, Misconception, and Lies in MEP 101

by this logic, Herzig et al. do not actively use the notion of trust to modify the

outcome of an action’s execution with respect to an agent’s perspective, that is what

we are trying to accomplish with our idea of attitudes. Conversely, Rodenhäuser

[2014] proposes a theoretical framework where agents make use of the reliability of

the source (using the so-called dynamic attitudes) to correctly update their beliefs.

While our idea of attitudes stems from such work, we only introduced attitudes that

are intuitively derived from real-world scenarios without considering more complex

ones. In the future, we plan to expand our formalization and the planner with the

attitudes presented by Rodenhäuser [2014] along with the idea of “plausibility”.

Belief revision [Baltag and Smets, 2016] in presence of inconsistent/false beliefs

has been explored by Baral et al. and Herzig et al.. These works focus on the

introduction of a theoretical framework for resolving inconsistencies. Hence, we only

compare their approaches with our formalization. Baral et al. [2015] mainly focus on

false beliefs, dividing their approach into two steps. First, they remove the incorrect

beliefs of fully observant agents from the current e-state; and next, they apply the

action on the revised state. Their solution correctly accounts for false beliefs, but

it is not sufficient to resolve inconsistent beliefs. On the other hand, Herzig et al.

[2005] propose a multi-agent extension of AGM-style belief revision [Gärdenfors

and Makinson, 1988]. Once a new property is acquired with a sensing action, the

agents update their beliefs according to their view of the observation. The revision

procedure makes use of a preference-based revision operator. While revising the

agents’ beliefs could be a viable solution we believe that having to decouple the

belief revision from the e-state update for each action execution would generate

an excessive overhead in the solving process.

102

	List of Figures
	List of Tables
	Introduction & Preliminaries
	Motivation
	Planning: Notation and Concepts
	Basic Concepts
	Planning Problem Categories
	Classical Planning
	Conformant/Contingent Planning
	Multi-Agent Planning

	Reasoning about Knowledge and Beliefs
	Epistemic Logic
	Epistemic Logic Terminology
	Epistemic Logic Semantic
	Axioms Systems
	Knowledge or Belief

	Multi-agent Epistemic Planning
	Epistemic Actions
	Multi-agent Epistemic Planning Problem
	Complexity Overview

	Possibilities-Based MEP Action Language
	Background
	The Epistemic Action Language mA*
	Possibilities

	The Epistemic Action Language mAp
	The Language Specification
	The Language Properties
	mA* and mAp Comparison

	Communication with Trust
	Trust in mAp
	un/mis-Trustworthy Announcement
	un-Trustworthy Announcement
	mis-Trustworthy Announcement

	Desired Properties

	Capturing Trust with Update Models
	mA* un-Trustworthy Announcement
	mA* mis-Trustworthy Announcement

	Trust, Misconception, and Lies in MEP
	Agents' Attitudes and Inconsistent Beliefs
	Enriched Domains

	Updated Transition Function
	Examples of Actions Execution
	Desired Properties

	Related Work

