
Life is what happens to us while we are making
other plans.

— Allen Saunders
Reader’s Digest, January 1957

5
Comprehensive Multi-Agent Epistemic

Planners

Contents
5.1 Background . 103

5.1.1 Imperative and Declarative Programming 104
5.2 EFP: an Epistemic Forward Planner 106

5.2.1 The Overall Architecture 107
5.2.2 EFP 2.0 . 108
5.2.3 Experimental Evaluation 110
5.2.4 Optimizations and Alternative Search Strategies 120

5.3 PLATO: an Epistemic Planner in ASP 137
5.3.1 Modeling MEP using ASP 137
5.3.2 Experimental Evaluation 145
5.3.3 Correctness of PLATO 147

5.1 Background

As already mentioned in Section 1.2, one of the planning community researchers’

most important objectives is to develop automated tools to solve various planning

problems. These tools, known as planners or solvers (Definition 1.7), concretize all

the theoretical studies to solve problems using all the studied techniques. In what

follows we will introduce two solvers, for Multi-agent Epistemic planning problems,

103

104 5.1. Background

that incorporate all the theoretical innovations described in the previous chapters.

These planners share the same objective, i.e., solving problems in the multi-agent

epistemic setting, but are implemented using different programming paradigms. We

will firstly explore these two paradigms and their differences. We will then illustrate

the two planners, describing their design along with some experimental evaluations.

5.1.1 Imperative and Declarative Programming

In this brief introduction, we will present two well-known programming paradigms,

i.e., imperative and declarative. These two approaches are widely studied in the

computer science community and, for the sake of readability, we will assume that

the reader is familiar with such concepts. That is why what follows is just a

high-level characterization of the topics. For a more complete discussion on these

two paradigms, we address the reader to the work by Fahland et al. [2009].

Imperative Programming

Let us start by describing the more “classical” of the two paradigms: imperative

programming. This approach is, in fact, the one that arose alongside the computers.

The programs modeled following this paradigm are made of a series of precise

instructions. These instructions, or commands, are executed sequentially and are

deterministic and, generally, read or write values stored in the computer memory. An

easy, and yet clear, transposition of an imperative program in our everyday life is a

recipe. A recipe, in fact, is comprised of a series of instructions that the reader must

follow if she/he wants to obtain the desired result. This means that an imperative

program is similar to our way of giving or executing instructions, therefore it is only

natural that this approach is the mostly adopted one. Nevertheless, while recipes’

instructions do not need to be too specific, computer commands must be very

detailed given, that the machines lack any sense of “interpretation”. This means

that complex imperative programs might be comprised of a very large sequence of

commands, making it hard to: debug, maintain, explain, adapt, and so on. Examples,

5. Comprehensive Multi-Agent Epistemic Planners 105

among many others, of imperative programming languages are C++ [Stroustrup,

2013], Python [Van Rossum and Drake, 2009], and Java [Arnold et al., 2005].

Declarative Programming

A different type of approach with respect to the one aforementioned is known as

declarative programming. Among the declarative programming paradigms, one

of the most mature and important in AI is logic programming. This paradigm

stems from first-order logic and it has gained a lot of attention in recent years.

The declarative approach aims to solve a problem by describing it and its rules,

rather than explicitly stating the instructions to follow. This makes declarative

programming more suited for all those situations where the problem definition, its

constraints, and the structure of its solution are known, and defining a procedural

algorithm may require great efforts. Examples of such problems are the n-queens

problem [Bowtell and Keevash, 2021] or the well-known Sudoku [Hanson, 2021]. In

particular, in this thesis, we will make use of the language known as Answer Set

Programming [Lifschitz, 2008], or ASP for short, introduced next.

Answer Set Programming A general program P in the language ASP is

a set of rules r of the form:

a0 ← a1, . . . , am, not am+1, . . . , not an

where 0 ≤ m ≤ n and each element ai, with 0 ≤ i ≤ n, is an atom of the

form p(t1, . . . , tk), p is a predicate symbol of arity k and t1, . . . , tk are terms built

using variables, constants and function symbols. Negation-as-failure (naf) literals

are of the form not a, where a is an atom. Let r be a rule, we denote with

h(r) = a0 its head, and B+(r) = {a1, . . . , am} and B−(r) = {am+1, . . . , an} the

positive and negative parts of its body, respectively; we denote the body with

B(r) = {a1, . . . , not an}. A rule is called a fact whenever B(r) = ∅; a rule is a

constraint when its head is empty (h(r) = false); if m = n the rule is a definite

rule. A definite program consists of only definite rules.

106 5.2. EFP: an Epistemic Forward Planner

A term, atom, rule, or program is said to be ground if it does not contain

variables. Given a program P , its ground instance is the set of all ground rules

obtained by substituting all variables in each rule with ground terms. In what

follows we assume atoms, rules, and programs to be ground. Let M be a set of

ground atoms (false /∈ M) and let r be a rule: we say that M |= r if B+(r) ̸⊆ M

or B−(r) ∩M ≠ ∅ or h(r) ∈M . M is a model of P if M |= r for each r ∈ P . The

reduct of a program P with respect to M , denoted by PM , is the definite program

obtained from P as follows: (i) for each a ∈ M , delete all the rules r such that

a ∈ B−(r), and (ii) remove all naf-literals in the remaining rules. A set of atoms M

is an answer set [Gelfond and Lifschitz, 1988] of a program P if M is the minimal

model of PM . A program P is consistent if it admits an answer set.

We will make use of the multi-shot declarations for ASP, i.e., statements of the

form #program sp(p1, . . . , pk), where sp is the name of the sub-program and the

pi’s are its parameters [Gebser et al., 2019]. Precisely, if R is a list of non-ground

rules and declarations, with R(sp) we denote the sub-program consisting of all

the rules following the statement up to the next program declaration (or the end

of the list). If the list does not start with a declaration, the default declaration

#base is implicitly added by clingo.

An ASP program R is defined extensible if it contains declarations of the form

#external a : B, where a is an atom and B is a rule body. These declarations

identify a set of atoms that are outside the scope of traditional ASP solving

(e.g., they may not appear in the head of any rule). When we set a to true we

can activate all the rules r such that a ∈ B+(r). Splitting the program allows

us to control the grounding and solving phases of each sub-program by explicit

instructions using a Python script.

5.2 EFP: an Epistemic Forward Planner

The first system that this thesis will present is a solver, called EFP, designed

following the imperative programming paradigm. In particular, the solver, that can

be found at https://github.com/FrancescoFabiano/EFP, is fully developed in

https://github.com/FrancescoFabiano/EFP

5. Comprehensive Multi-Agent Epistemic Planners 107

C++ [Stroustrup, 2013]. EFP is a general and comprehensive epistemic forward solver

that can solve problems defined in mAρ. Moreover, thanks to the introduction of

agents’ attitudes and other capabilities (explored later in this chapter), the planner

will allow the users to tailor actions in whichever fashion they prefer without having

to worry about tedious and intricate effects definitions. This will help in formalizing

new scenarios in which agents can reason while considering belief relations with

concepts such as lies, misconceptions, trust, and so on and where different groups

of agents react differently to the actions.

5.2.1 The Overall Architecture

The overall architecture of EFP is given in Algorithm 1 even if it is not different

from the standard algorithm implemented by search-based planners. Nonetheless,

EFP has a modular organization that facilitates modifications and extensions. The

key modules of EFP are (i) a pre-processor; (ii) initial e-state computation; and

(iii) a search engine.

(i) Pre-processor : This module is responsible for parsing the planning problem

description, setting up the planning domain, which includes the list of agents,

the list of actions, the rules for computing frames of reference, and the list

of fluent literals. This module is also responsible for the initialization of

necessary data structures (e.g., e-states) and executes some transformations.

(ii) Initial e-state computation: This module is responsible for computing the set

of initial e-states. Under the assumption that the initial state description

encodes a finitary S5-theory in the sense of Son et al. [2014], we know that the

set of initial e-states is finite (up to bisimulation). This module implements

the algorithm given in Son et al. [2014] for computing the aforementioned set

of initial e-states.

(iii) Search engine: This module is responsible for computing a solution. EFP

implements different research strategies such as breadth-first, depth-first, and

best-first search (Algorithm 1), that can be selected by the user to solve

108 5.2. EFP: an Epistemic Forward Planner

the desired problem. The heuristics used by EFP, when best-first search is

selected, are presented in the next section. Finally, this search engine is able

“to reason” on both the two e-states representations discussed in the previous

chapters, i.e., Kripke structures and possibilities.

Algorithm 1: EFP Best-First Search
Input : A planning problem P = ⟨F ,AG, A,O, s0, ϕg⟩
Output : A solution for P if exists; failed otherwise

1 Compute the initial e-state given s0: (Mi,Wi)
2 Initialize a priority queue q = [({(Mi,Wi)}, [])]
3 while q is not empty do
4 (Ω, plan) = dequeue(q)
5 if (M,Wd) |= ϕg for every (M,Wd) ∈ Ω then
6 return plan
7 end
8 for action a executable in every (M,Wd) in Ω do
9 Compute Ω′ = ⋃︁

(M,Wd)∈Ω Φ(a, (M,Wd))
10 Compute heuristics and insert (Ω′, plan ◦ a) into q
11 end
12 end
13 return failed

5.2.2 EFP 2.0

The solver EFP was firstly introduced by Le et al. [2018] as the first epistemic

planner able to deal with unlimited nested belief formulae and dynamic common

knowledge. This original planner, which we will identify with EFP 1.0, was based

on the action language mA∗ and, therefore, used Kripke structures as e-states

representation. The planner allowed for both breadth-first and best-first searches.

The heuristic used in the latter was the so-called Epistemic Planning Graph that

allowed reasoning on partial Kripke structures to derive the score of the various

e-states. For more details on EFP 1.0 and on the Epistemic Planning Graph we

address the reader to the work by Le et al. [2018].

In this work, we present an updated version of the planner presented by Le

et al.. For clarity, we will call such updated planner EFP 2.0. This new solver

5. Comprehensive Multi-Agent Epistemic Planners 109

redesigned every element of EFP 1.0 to introduce multiple e-states representations

and, therefore, multiple transition functions. On the other hand, our implementation

keeps the same modular structure of EFP 1.0. The planning process executed by

EFP 2.0 is, primarily, a breadth-first search with duplicate checking. Other types of

searches have been also implemented and will be presented later in this chapter.

Let us note that the computation of the initial state is not a trivial task in MEP. In

particular, given a belief formula φini it is, in general, possible to generate infinite

e-states that respect φini. As mentioned, to overcome this problem EFP 1.0 imposes

that the initial state description should be a finitary S5-theory [Son et al., 2014].

In EFP 2.0 we still require the initial description to be a finitary S5-theory but we

allow φini to be less specific. In particular, without going into details of finitary

S5-theories, whenever a fluent literal f is not considered by φini, EFP 2.0 assumes

that is common knowledge between all the agents that f is unknown.

Another remark that has to be done is about the e-states. EFP 2.0 has

a “templatic” e-state definition. This means that each solving process can be

executed using the desired e-state representation with its relative transition function.

Currently, EFP 2.0 implements two e-states representations, i.e., Kripke structures

and possibilities, and diverse transition functions that can be selected to solve

the given problem:

• the one introduced in Baral et al. [2015] (for Kripke structures);

• the transition function for possibilities introduced in Definition 2.12 that

emulates the behavior of mA∗;

• the enriched possibilities update that allows for agents to be characterized

with attitudes presented in Definition 4.4; and

• an experimental transition function for possibilities that allows for user-defined

update models to be adopted. We will analyze this configuration later in this

section.

110 5.2. EFP: an Epistemic Forward Planner

Another important concept that EFP 2.0 integrates is the Kripke structures size

reduction. We implemented two algorithms, following the works by Paige and Tarjan

[1987], Dovier et al. [2004], that starting from a generic Kripke structure compute its

bisimilar, and therefore semantically equivalent, correspondent with minimal size.

Finally, EFP 2.0 introduces the concept of “already visited e-state”. Excluding

the already visited states during the planning is a common practice and it is done in

the majority of the solving processes. Nevertheless, EFP 1.0 did not implement the

comparison of visited states. That is because comparing two e-states is not as trivial

as comparing, for instance, two sets of fluent literals. In fact, being each e-state in

mA∗ a Kripke structure, comparing two e-states means checking for isomorphism

or bisimulation between them. That is why in EFP 1.0 the comparison for already

visited states was left as future development. On the other hand, with possibilities,

the equality check should be faster since, thanks to the non-well-foundeness, we

can collapse each possibility in a small system of equations and exploit the already

calculated possibilities information. That is why in EFP 2.0 we implemented the

visited e-state check initially for possibilities and later for Kripke structures.

5.2.3 Experimental Evaluation

In this paragraph we compare the new multi-agent epistemic planner EFP 2.0 with,

to the best of our knowledge, the only other comprehensive multi-agent epistemic

solver in literature, i.e., the planner presented in Le et al. [2018]. All the experiments

were performed on a 3.60GHz Intel Core i7-4790 machine with 32GB of memory.

From now on, to avoid unnecessary clutter, we will make use of the fol-

lowing notations:

• L to indicate the (optimal) length of the plan;

• WP to indicate that the solving process returned a Wrong Plan;

• TO to indicate that the solving process did not return any solution before the

timeout (25 minutes);

5. Comprehensive Multi-Agent Epistemic Planners 111

• EFP 1.0 to denote the Breadth-First search planner presented in Le et al.

[2018]. We chose the Breadth-First solver because we wanted to focus on the

basis of the solving process so that all the future optimizations could benefit

from this research.

• K-MAL to identify our solver while using Kripke structures as e-state repre-

sentation and the transition function of Baral et al. [2015].

• K-BIS to identify our solver while using Kripke structures as e-state represen-

tation and the algorithm to find the coarsest refinement, presented in Paige

and Tarjan [1987], to minimize the e-states size. We also tried to compact

the e-states using the algorithm presented in Dovier et al. [2004] but the

performances were almost identical. This is probably because the Kripke

structures we are considering are relatively small in size.

• P-MAR to identify our solver while using possibilities as e-state with the

transition function introduced in Definition 2.12.

All the configurations K-MAL, K-BIS, and P-MAR check for already visited states.

To indicate the same configurations without the visited states check we will use

K-MAL-NV, K-BIS-NV, and P-MAR-NV.

We evaluate EFP 2.0 on benchmarks collected from the literature [Kominis and

Geffner, 2015, Huang et al., 2017]. In particular, these domains are:

(i) Collaboration and Communication (CC). In this domain, n ≥ 2 agents move

along a corridor with k ≥ 2 rooms in which m ≥ 1 boxes can be located.

Whenever an agent enters a room, she can determine if a certain box is in

the room. Moreover, agents can communicate information about the boxes’

position to other attentive agents. The goals consider agents’ positions and

their beliefs about the boxes (Table 5.1).

(ii) Selective Communication (SC). SC has n ≥ 2 agents that start in one of

the k ≥ 2 rooms in a corridor. An agent can tell some information and

all the agents in her room or the neighboring ones can hear what was told.

112 5.2. EFP: an Epistemic Forward Planner

L EFP 1.0 K-MAL K-BIS P-MAR EFP 1.0 K-MAL K-BIS P-MAR
CC_1: |AG| = 2, |F| = 10, |A| = 16 CC_3: |AG| = 3, |F| = 14, |A| = 24

3 .08 .05 .08 .02 .12 .07 .13 .03
4 .16 .09 .16 .03 .56 .31 .54 .10
5 1.31 .79 1.14 .16 6.55 3.25 4.89 .60
6 6.99 3.58 4.42 0.64 25.11 9.09 12.66 1.71
7 49.44 15.95 16.06 2.61 TO 92.37 142.06 12.37

CC_2: |AG| = 2, |F| = 14, |A| = 28 CC_4: |AG| = 3, |F| = 14, |A| = 42
3 .31 .21 .37 .07 .62 .54 .81 .15
4 1.54 .98 1.77 .26 3.22 2.84 5.40 .87
5 22.14 12.55 18.80 1.68 104.97 106.02 152.38 7.41
6 171.19 72.92 102.97 7.71 473.03 246.08 313.70 25.47
7 TO 437.91 592.48 38.81 TO TO TO 174.67

Table 5.1: Runtimes for the Collaboration and Communication (CC) domain.

Every agent is free to move from one room to its adjacent. The goals usually

require some agents to know certain properties while other agents ignore them

(Figure 5.1).

5 6 7 8 9 10 11

0

20

40

60

80

100

Plan length

S
ea
rc
h
ti
m
e
(i
n
se
co
n
d
s)

EFP 1.0
P-MAR

Figure 5.1: Comparison between EFP 1.0 and P-MAR on SC instances with k = 11
rooms and |AG| = 9.

(iii) Grapevine (GR). n ≥ 2 agents are located in k ≥ 2 rooms. An agent can

move freely to each other room and she can share a “secret” with the agents

that are in the room with her. This domain supports different goals, from

5. Comprehensive Multi-Agent Epistemic Planners 113

sharing secrets with other agents to having misconceptions about agents’

beliefs (Table 5.2).

Grapevine
|AG| |F| |A| L EFP 1.0 K-MAL-NV K-MAL K-BIS-NV K-BIS P-MAR-NV P-MAR

3 9 24

2 WP .09 .09 .19 .20 .03 .02
4 WP 9.19 8.13 13.54 12.76 1.34 1.25
5 WP 94.49 75.32 111.38 84.46 8.67 7.71
6 WP 372.64 278.93 398.10 232.54 27.63 20.26

4 12 40

2 WP 1.85 1.786 1.95 2.08 .17 .18
4 WP 403.11 274.53 178.52 111.38 13.49 7.31
5 WP TO TO TO 775.63 123.54 36.54
6 WP TO TO TO TO 427.97 108.64

Table 5.2: Runtimes for the Grapevine (GR) domain. We compare the configurations
with and without the visited e-states check. EFP 1.0 errors are caused by a wrong initial
e-state generation.

(iv) Coin in the Box (CB). This domain is firstly presented in Planning Domain 2.1

we will still provide a brief description of it. n ≥ 3 agents are in a room

where in the middle there is a box containing a coin. None of the agents know

whether the coin lies heads or tails up and the box is locked. One agent has

the key to open the box. The goals usually consist in some agents knowing

whether the coin lies heads or tails up while other agents know that she knows,

or are ignorant about this (Table 5.3).

CB with |AG| = 3, |F| = 8, |A| = 21
L EFP 1.0 K-MAL K-BIS P-MAR
2 .003 .003 .006 .001
3 .048 .077 .097 .016
5 WP 5.546 1.438 .367
6 WP 108.080 14.625 2.932
7 WP 317.077 38.265 6.996

Table 5.3: Runtimes for the Coin in the Box (CB) domain.

(v) Assembly Line (AL). In this problem, there are two agents, each responsible

for processing a different part of a product. Each agent can fail in processing

her part and can inform the other agent of the status of her task. Two agents

decide to assemble the product or restart, depending on their knowledge about

114 5.2. EFP: an Epistemic Forward Planner

the product status. The goal in this domain is fixed, i.e., the agents must

assemble the product, but what varies is the depth of the belief formulae used

as executability conditions (Table 5.4).

AL with |AG| = 2, |F| = 4, |A| = 6
d EFP 1.0 K-MAL K-BIS P-MAR
2 .43 .32 .42 .07
4 .96 .75 .64 .11
6 26.20 27.85 13.51 2.44
8 TO TO 883.87 150.92
C .44 .32 .43 .08

Table 5.4: Runtimes for the Assembly Line (AL) domain. The last row identifies the
instance where the executability conditions are expressed through common belief.

All our experiments (Tables 5.1 to 5.4, Figure 5.1) show that EFP 2.0, if used with

its fastest configuration P-MAR, performs significantly better than EFP 1.0. We

believe that these results derive from several factors.

First and foremost the choice of using possibilities as e-states and mAρ as action

language ensured that every e-state generated during the planning process had

always smaller or equal size with respect to the same state generated in EFP 1.0.

In particular, EFP 1.0, generating e-states with non-minimal size, introduces extra

(always increasing) overhead at each action application with respect to EFP 2.0.

This is illustrated in Table 5.5 where the number of worlds and edges generated by

EFP 1.0 & K-MAL and K-BIS & P-MARafter executing an action instances sequence

is compared. Let us note that Table 5.5 is graphically rendered in Figure 2.12.

Moreover, the implementation of P-MAR exploits already calculated e-states

information when it creates new ones reducing even more the e-states generation

time (this factor is not considered in Table 5.5). From our results, it is clear that

EFP 1.0 and P-MAR perform similarly on very small instances of the problems but

as soon as the problem grows the two solvers have different behaviors. In fact, while

EFP 1.0 search time increases very rapidly P-MAR stays relatively stable. That

is because when the problems become more complex the planner, generally, has

to generate more e-states. Regarding the other configurations of EFP 2.0, namely

5. Comprehensive Multi-Agent Epistemic Planners 115

CB with |AG| = 3, |F| = 8, |A| = 21

L
|Worlds| |Edges|

EFP 1.0 & K-BIS & EFP 1.0 & K-BIS &
K-MAL P-MAR K-MAL P-MAR

1 6 6 36 36
2 12 9 70 53
3 24 14 138 82
4 48 19 274 111
5 85 23 465 131
6 159 31 847 171
7 273 38 1409 201
8 468 45 2435 231
9 819 52 4361 261
10 1461 59 8037 291

Table 5.5: Comparison of the e-states’ size, in terms of worlds (left) and edges (right),
generated by the various solving processes on the Coin in the Box (CB) domain.

K-MAL and K-BIS, we note that they generally outperform EFP 1.0. Nevertheless,

in some cases (Tables 5.1 and 5.4), we note some exceptional peaks in these

configuration’s performances. These peaks are the results of (i) the use of the

visited-state check that in some configurations may add an extra overhead that

in EFP 1.0 was not present; and (ii) a less optimized entailment-check function,

with respect to EFP 1.0, in the configurations of EFP 2.0 that are based on Kripke

structures. A remark has to be done on the K-BIS configuration. From the results

(Tables 5.1 to 5.4), it is clear how this configuration, even if executes the solving

process on minimal-sized e-states, it is still outperformed by P-MAR. The reasons

for this are essentially two: (i) thanks to their non-well-founded nature possibilities

allow re-using already generated information during the planning process; and

(ii) the use of external algorithms to minimize the size of the e-states introduces

an extra overhead with respect to P-MAR.

Another important factor that makes EFP 2.0 faster than EFP 1.0 is the concept

of visited e-states. As we can see in Table 5.2 the planner takes advantage of this

check even when the e-states are represented as Kripke structures. The fact that

the visited-state check increases the performances of EFP 2.0 proves that, even if

116 5.2. EFP: an Epistemic Forward Planner

this check relies on “heavy” algorithms, the epistemic planning process benefits

from the elimination of the duplicates.

Finally, the complete refactoring of the code helped us to implement a more

efficient solver. In fact, even if EFP 2.0 is based on EFP 1.0, the remodeling of

the solver allowed us: (i) to correct bugs related to the initial e-state generation

(Table 5.2) and to the transition function (Table 5.3); and (ii) to optimize the code.

This optimization is reflected by the comparison between K-MAL and EFP 1.0. In

fact, these two configurations both use Kripke structures as e-states and implement

mA∗ [Baral et al., 2015]. Nevertheless, K-MAL generally outperforms EFP 1.0

as shown in Table 5.1.

Alternative Transition Functions

Enriched mAρ Update As mentioned above, EFP 2.0, besides implementing

the language mAρ, allows the user to exploit two different transition functions.

The first one is fully described in Chapter 4, in particular in Definition 4.4. This

transition function allows to describe agents with several attitudes and to solve

domains where concepts such as trust and lies are involved. The performances of

the planner while using this transition function are almost identical with respect

to P-MAR on domains that can be solved by both configurations. On the other

hand, domains where this transition function “full potential” is required cannot be

solved by other configurations. That is why, for the sake of readability, we will not

report any experimental comparison for the transition function of Definition 4.4

and other EFP 2.0 configurations. Nonetheless, the enriched semantics of mAρ has

been implemented in EFP 2.0 that is now able to tackle families of problems that

consider complex aspects such as doxastic reasoning, lying agents, faulty perception,

etc. Let us note that Figures 4.2 to 4.6 are automatically generated by the planner

and, therefore, constitute examples of execution.

One of our main interests is to compare the expressive power of the new semantics

with other approaches in the literature. To this end, we tested a small variation

of the Grapevine domain (that, even though it does not fully explore the newly

5. Comprehensive Multi-Agent Epistemic Planners 117

introduced concepts, comprises elements such as misconception and lies) on both

EFP 2.0 and the planner RP-MEP introduced in Muise et al. [2015]. The latter

firstly encodes an MEP problem into a classical planning problem. Next, the solving

phase is handled by a classical planner. The results are reported in Table 5.6. The

GR with |AG| = 4, |F| = 16, |A| = 32
d L EFP 2.0 RP-MEP
2

3
21.58 s 9.33 s

4 21.58 s 3189.05 s
≥ 5 21.58 s Time-Out
2

4
409.53 s 9.41 s

4 409.53 s 3201.13 s
≥ 5 409.53 s Time-Out

Table 5.6: Runtimes, in seconds, of the Grapevine (GR) domain with a Time-Out of
1800 s.

comparison shows how RP-MEP outperforms EFP 2.0 when the formulae depth

parameter d is small, due to the efficiency of classical planners. However, since the

size of the encoded classical problem is exponential with respect to d, increasing

the depth of DEL formulae results in efficiency loss on the former solver. On the

other hand, EFP 2.0 scales better when the value of d is increased since the space

required from the latter solver does not depend on such parameter.

Custom Update Models Finally, let us introduce a configuration of EFP 2.0

that takes advantage of diverse factors, that is possibilities, update models, and

agents’ attitudes. While this configuration is not directly derived by some theoretical

innovation, it combines the diverse capabilities of the languages to increase the

functionalities of the planner. In particular, this configuration allows to define

custom update models (Definition 2.2) for Possibilities. These custom update models

allow the user to specify all sorts of behaviors for the actions, making it possible

to capture all the variations in the belief update in epistemology. This level of

customization permits to confront several theories on how the agents’ beliefs must

be updated when, for example, in presence of lies, stubbornness, trust ignorance,

and so on. The e-states update follows the schema presented in Definition 2.3. The

118 5.2. EFP: an Epistemic Forward Planner

specification of custom update models is made through a PDDL-like syntax as we

can see in Listing 5.1. In Listing 5.1, we show how custom event models could be

used to represent the transition function presented in Figure 2.2 while, in Listing 5.2,

we provide an example of instantiated actions in mAρ. Let us note that, for the sake

of simplicity, we unified sensing and announcement under the action type epistemic.

The specification starts with the definition of the single events (the squares nodes

in Figure 2.2) in Lines 1-26. Each event, besides specifying its unique id, is also

characterized by preconditions and postconditions. Both conditions can be a

conjunction of the following, possibly negated, meta-values: act_eff, act_pre

and none. act_eff and act_pre are proxies for the action’s (from which we

are deriving the instantiated update model) effects and preconditions, respectively.

none, on the other hand, is used to explicitly tell that the conditions are empty.

Next, in Line 29, the observability groups are presented. These groups represent

all the possible sets in which agents may belong. An example of this is shown in

Lines 6-8 and 16-18 of Listing 5.2 where the observability of the agents a and b is

defined. The order in which these statements are written matters, as the solver

returns as observability group the first that has its conditions verified—the truth of

such conditions depends on the specific e-state on which they are checked.

Finally, from Line 31 of Listing 5.1, the structure of the event model is described.

Each model, identified by a unique id, specifies which events considers and,

among them, which is the pointed one (the bold nodes in Figure 2.2). Moreover,

the labeled edges of the model are also specified with a syntax of the form

(outgoing_node, incoming_node, label). Listing 5.2 provides an example of

event model instantiation. To be more precise, the action open_a (Lines 3-8),

follows the model Ontic with precondition has_key_a and effects opened. This

means that the event model of this action is comprised of event 4 with postcondition

opened and of event 3. Moreover, agent a always belongs to the Fully group while

b could be in either Fully or Oblivious depending on the value of looking_b.

5. Comprehensive Multi-Agent Epistemic Planners 119

1 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Events d e f i n i t i o n ∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2
3 (event:
4 : id (1) ∗ event " sigma−epistemic "
5 :precondition ($ac t_e f f $)
6 :postcondition (none)
7)
8
9 (event:

10 : id (2) ∗ event " tau "
11 :precondition (not ($ac t_e f f $))
12 :postcondition (none)
13)
14
15 (event:
16 : id (3) ∗ event " e p s i l o n "
17 :precondition (none)
18 :postcondition (none)
19)
20
21 (event:
22 : id (4) ∗ event " sigma−ontic "
23 :precondition (none)
24 :postcondition ($ac t_e f f $)
25)
26
27 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ O b s e r v a b i l i t y Groups ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
28
29 (obs_groups: { Ful ly ; P a r t i a l l y ; Ob l iv ious })
30
31 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Event Models D e f i n i t i o n ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
32
33 (model:
34 : id (Ep i s t em i c) ∗ Sensing − Annoucement Action
35 :events { 1 ; 2 ; 3 }
36 :pointed (1)
37 :edges {(1 , 1 , F u l l y) (2 , 2 , F u l l y) (3 , 3 , F u l l y)
38 (1 , 1 , P a r t i a l l y) (2 , 2 , P a r t i a l l y) (3 , 3 , P a r t i a l l y)
39 (1 , 2 , P a r t i a l l y) (2 , 1 , P a r t i a l l y)
40 (1 , 3 , O b l i v i o u s) (2 , 3 , O b l i v i o u s) (3 , 3 , O b l i v i o u s) }
41)
42
43 (model:
44 : id (Ont ic)
45 :events {4 ;3}
46 :pointed (4)
47 :edges ((4 , 4 , F u l l y) (3 , 3 , F u l l y) (4 , 3 , O b l i v i o u s) (3 , 3 , O b l i v i o u s))
48)

Listing 5.1: The transition function of mA∗ described as custom update template

1 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Ontic a c t i o n : open_a∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2
3 executable open_a i f has_key_a;

120 5.2. EFP: an Epistemic Forward Planner

4 open_a has_effects opened;
5 open_a has_type Ont ic ;
6 a in_group Ful ly of open_a;
7 b in_group Ful ly of open_a i f look ing_b;
8 b in_group Obl iv ious of open_a;
9

10
11 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Epistemic a c t i o n : shout_tai l_a ∗∗∗∗∗∗∗∗∗∗∗∗∗∗
12
13 executable shout_tai l_a i f B(a , t a i l) , t a i l ;
14 shout_tai l_a has_effects t a i l ;
15 shout_tai l_a has_type Epi s t emic ;
16 a in_group Ful ly of shout_ta i l_a ;
17 b in_group Ful ly of shout_tai l_a i f look ing_b;
18 b in_group Obl iv ious of shout_ta i l_a ;

Listing 5.2: Examples of actions definitions with custom update models.

In Listing 5.1 we provided just an example of one possible custom update model.

The advantage of this EFP 2.0 configuration is that is flexible enough to be adopted

to test different update templates. This is useful, especially in combination with the

planner capability of providing a graphical representation of the e-states1, allowing

to better understand how the new update template affects the e-states.

5.2.4 Optimizations and Alternative Search Strategies

Whilst the generality of the planner is of the utmost importance, reducing the search

times, given the inherent complexity of MEP, is also a feature that is essential to

our solver. That is why our final efforts were spent on developing more efficient data

structures and processes of e-state updates along with some domain-independent

heuristics and diverse search methods.

Code Optimizations

This section explores some of the efforts that allowed to optimize the performances

of EFP 2.0. We will not explore in detail such optimizations as this would require

a tedious explanation of all the involved data structures. On the other hand, we

will provide an overall description of the changes followed by several tables that

capture the results of these optimizations.
1Figures 4.2 to 4.6 are generated thanks to this functionality.

5. Comprehensive Multi-Agent Epistemic Planners 121

Thanks to the Valgrind profiler [Nethercote and Seward, 2007] we were able to

identify which operations of EFP 2.0 spent most of the resources (time and memory).

We noticed that, surprisingly, these operations were not complex tasks linked to

epistemic reasoning but were related to string operations. We made use of string

as internal ids for the various data structures of the planning process without

realizing that such data type can bring severe overheads on C++ programs. That

is why we restructured the planner so that it would make use of dynamic_bitset,

provided by the library Boost [Schling, 2011], as internal ids instead of strings.

This change affected most of the planner code but provided excellent results in terms

of time and memory performances optimization as we can see in Tables 5.7 to 5.10

for the Time consumption, in seconds, and Tables 5.11 to 5.14 for the Memory

consumption, in MB. Let us note that the changes only affected the underlying

data structures and did not modify the search process. This means, that the two

approaches shared the same search-tree topology when solving the same instance

thus indicating that the improvements derived from the new data structure. As

before, all the experiments were performed on a 3.60GHz Intel Core i7-4790 machine

with 32GB of memory. Moreover, we will use:

• EFP 2.0: to indicate the configuration of EFP 2.0 before the conversion of the

data structures;

• EFP 2.1: to indicate the optimized planner; and

• %: to indicate the percentage of resources “saved” by EFP 2.1 with respect to

EFP 2.0.

122 5.2. EFP: an Epistemic Forward Planner

CB with ∥AG∥ = 3, ∥F∥ = 8, ∥A∥ = 21
L EFP 2.0 EFP 2.1 %
2 0.002 0.001 9.2
3 0.017 0.015 15.5
5 0.355 0.249 32.5
6 3.000 2.283 24.9
7 8.000 6.233 22.8

Table 5.7: Time consumption, in seconds, of EFP 2.0 and EFP 2.1 on the Coin in the
Box (CB) domain.

AL with ∥AG∥ = 2, ∥F∥ = 4, ∥A∥ = 6
d EFP 2.0 EFP 2.1 %
2 0.080 0.047 40.9
3 0.087 0.051 40.8
4 0.120 0.069 41.9
5 0.498 0.297 40.3
6 2.000 1.450 40.7
7 26.543 15.690 40.8
8 150.827 90.982 39.7
9 1689.322 1003.420 40.6
C 0.101 0.055 45.0

Table 5.8: Time consumption, in seconds, of EFP 2.0 and EFP 2.1 on the Assembly
Line (AL) domain.

GR with ∥AG∥ = 3, ∥F∥ = 9, ∥A∥ = 24 GR with ∥AG∥ = 4, ∥F∥ = 12, ∥A∥ = 42
L EFP 2.0 EFP 2.1 % L EFP 2.0 EFP 2.1 %
2 0.0301 0.0206 31.4 2 0.221 0.104 52.6
3 0.202 0.132 34.0 3 1.452 0.760 49.6
4 1.374 0.873 36.5 4 10.490 5.248 49.9
5 9.125 5.308 41.8 5 72.228 36.392 49.6
6 22.216 14.000 36.7 6 198.431 98.841 50.2

Table 5.9: Time consumption, in seconds, of EFP 2.0 and EFP 2.1 on the Grapevine
(GR) domain.

5. Comprehensive Multi-Agent Epistemic Planners 123

CC with ∥AG∥ = 2, ∥F∥ = 10, ∥A∥ = 16 CC with ∥AG∥ = 2, ∥F∥ = 14, ∥A∥ = 28
L EFP 2.0 EFP 2.1 % L EFP 2.0 EFP 2.1 %
3 0.022 0.016 28.7 3 0.081 0.041 48.5
4 0.035 0.026 25.2 4 0.280 0.165 43.3
5 0.195 0.149 23.3 5 2.371 1.233 48.9
6 0.807 0.622 22.7 6 9.990 6.288 37.1
7 3.311 2.627 20.7 7 48.810 30.026 38.5
CC with ∥AG∥ = 3, ∥F∥ = 13, ∥A∥ = 24 CC with ∥AG∥ = 3, ∥F∥ = 14, ∥A∥ = 24
L EFP 2.0 EFP 2.1 % L EFP 2.0 EFP 2.1 %

3 0.166 0.087 47.9
4 0.119 0.087 26.9 4 0.846 0.459 45.7
5 0.864 0.623 27.9 5 14.980 7.950 46.8
6 3.000 1.830 27.5 6 47.330 25.490 46.1
7 23.453 16.816 25.7 7 394.871 201.235 49.0

Table 5.10: Time consumption, in seconds, of EFP 2.0 and EFP 2.1 on the Collaboration
and Communication (CC) domain.

CB with ∥AG∥ = 3,F∥ = 8, ∥A∥ = 21
L EFP 2.0 EFP 2.1 %
2 0.0014 0.0012 9.2
3 3.13 3.75 -18.9
5 104.88 38.97 62.9
6 895.34 387.53 56.7
7 2635.73 1303.63 50.5

Table 5.11: Memory consumption, in MB, of EFP 2.0 and EFP 2.1 on the Coin in the
Box (CB) domain.

SC with ∥AG∥ = 9, ∥F∥ = 12, ∥A∥ = 14
L EFP 2.0 EFP 2.1 %
4 6.72 5.75 14.4
5 11.74 7.78 33.7
6 27.94 13.85 50.4
7 84.45 34.87 58.8
8 286.66 100.63 64.9
9 868.19 313.31 63.9
10 2833.88 1004.46 64.6
11 9242.77 3246.91 64.9

Table 5.12: Memory consumption, in MB, of EFP 2.0 and EFP 2.1 on the Selective
Communication (SC) domain.

124 5.2. EFP: an Epistemic Forward Planner

GR with ∥AG∥ = 3, ∥F∥ = 9, ∥A∥ = 24 GR with ∥AG∥ = 4, ∥F∥ = 12, ∥A∥ = 42
L EFP 2.0 EFP 2.1 % L EFP 2.0 EFP 2.1 %
2 12.35 6.91 44.1 2 93.38 20.97 77.5
3 63.52 23.17 63.5 3 698.63 110.03 84.2
4 427.15 138.53 67.6 4 6209.45 962.95 84.5
5 2812.83 897.15 68.1 5 10785.86 5416.12 49.8
6 7758.73 2942.66 62.1 6 10725.18 5409.72 49.6
7 7713.16 5322.13 31.0

Table 5.13: Memory consumption, in MB, of EFP 2.0 and EFP 2.1 on the Grapevine
(GR) domain.

CC with ∥AG∥ = 4, ∥F∥ = 12, ∥A∥ = 40 CC with ∥AG∥ = 2, ∥F∥ = 14, ∥A∥ = 28
L EFP 2.0 EFP 2.1 % L EFP 2.0 EFP 2.1 %
3 9.06 4.25 53.1 3 43.36 10.06 76.8
4 14.94 7.04 52.7 4 168.74 29.17 82.7
5 108.59 41.96 61.3 5 1871.65 287.68 84.6
6 541.29 207.84 61.6 6 11634.98 1860.75 84.0
7 2804.42 1123.37 59.9 7 12310.44 4694.33 61.8
CC with ∥AG∥ = 3, ∥F∥ = 13, ∥A∥ = 16 CC with ∥AG∥ = 3, ∥F∥ = 14, ∥A∥ = 24
L EFP 2.0 EFP 2.1 % L EFP 2.0 EFP 2.1 %

3 91.31 17.39 80.9
4 65.33 20.25 69.0 4 564.14 77.31 86.2
5 770.84 203.09 73.6 5 13366.47 1855.17 86.1
6 2909.04 767.28 73.6 6 13270.54 4497.85 66.1
7 10559.78 4750.69 55.0 7 13289.85 4492.25 66.2

Table 5.14: Memory consumption, in MB, of EFP 2.0 and EFP 2.1 on the Collaboration
and Communication (CC) domain.

5. Comprehensive Multi-Agent Epistemic Planners 125

Alternative Search Strategies and Heuristics

As mentioned before, planning on multi-agent epistemic domains is a very complex

task. That is why even if optimizing the solving process is essential, only focusing

on such a task may never allow epistemic planners to become tools suited for

real-life scenarios.

Search Strategies For this reason, we decided to investigate alternative search

strategies that may help in containing the resources needed to solve MEP problems.

In particular, other than the standard Breadth-First Search (BFS), we enriched

EFP 2.1 with other three types of searches. That is, we added the possibility to

solve problems by using: Depth-First Search (DFS), Iterative Depth-First Search

(I-DFS), and Best-First Search. Each of these searches is well-known among

the planning community and, therefore, we will not provide any details on their

implementation. As always Russell and Norvig [2010] propose an excellent review

of the aforementioned topics. In Tables 5.15 to 5.19, we show some empirical

evaluation of BFS, DFS, and I-DFS. As we can see from the results, none of the

approaches is clearly better than the other and, depending on the domain we are

trying to solve, one search strategy may be more advantageous than the others.

Nevertheless, from our results, we can conclude that BFS has the best results in

general and that I-DFS is almost always to prefer to DFS.

CB with ∥AG∥ = 3, ∥F∥ = 8, ∥A∥ = 21
L BFS I-DFS DFS
2 0.001 0.004 0.186
3 0.017 0.022 0.879
5 0.249 0.225 13.894
6 2.287 1.389 139.884
7 6.233 5.445 452.234

Table 5.15: Solving times of the three uninformed searches of EFP 2.1 on the Coin in
the Box (CB) domain.

126 5.2. EFP: an Epistemic Forward Planner

AL with ∥AG∥ = 2, ∥F∥ = 4, ∥A∥ = 6
d BFS I-DFS DFS
2 0.047 0.108 0.016
3 0.052 0.114 0.016
4 0.070 0.138 0.019
5 0.297 0.407 0.031
6 1.452 1.923 0.094
7 15.692 18.724 0.384
8 90.983 115.643 1.693
9 1003.423 1190.613 7.638
C 0.055 0.127 0.019

Table 5.16: Solving times of the three uninformed searches of EFP 2.1 on the Assembly
Line (AL) domain.

SC with ∥AG∥ = 9, ∥F∥ = 12, ∥A∥ = 14
L BFS I-DFS DFS
4 0.006 0.015 0.595
5 0.013 0.043 1.305
6 0.031 0.119 3.493
7 0.085 0.313 10.977
8 0.235 0.828 34.982
9 0.061 2.270 112.461
10 1.604 6.115 365.561
11 4.513 15.985 1190.163

Table 5.17: Solving times of the three uninformed searches of EFP 2.1 on the Selective
Communication (SC) domain.

GR with ∥AG∥ = 3, ∥F∥ = 9, ∥A∥ = 24 GR with ∥AG∥ = 4, ∥F∥ = 12, ∥A∥ = 42
L BFS I-DFS DFS L BFS I-DFS DFS
2 0.021 0.045 1.125 2 0.105 0.024 4.328
3 0.201 0.055 6.664 3 0.760 0.352 35.544
4 0.871 0.278 45.544 4 5.248 2.064 324.338
5 5.3085 2.534 301.848 5 36.391 19.153 64.394
6 14.784 22.817 1001.633 6 98.841 253.634 211.478

Table 5.18: Solving times of the three uninformed searches of EFP 2.1 on the Grapevine
(GR) domain.

5. Comprehensive Multi-Agent Epistemic Planners 127

CC with ∥AG∥ = 2, ∥F∥ = 10, ∥A∥ = 16 CC with ∥AG∥ = 3, ∥F∥ = 13, ∥A∥ = 24
L BFS I-DFS DFS L BFS I-DFS DFS
3 0.016 0.027 0.926 3 0.023 0.082 1.264
4 0.026 0.036 1.886 4 0.0852 0.208 6.289
5 0.179 0.149 15.106 5 0.625 1.765 0.029
6 0.629 0.465 76.496 6 1.835 1.957 290.614
7 2.625 0.995 414.385 7 16.813 11.125 74.776
8 5.312 6.338 1171.427

Table 5.19: Solving times of the three uninformed searches of EFP 2.1 on the
Collaboration and Communication (CC) domain.

Heuristics While BFS, DFS, and I-DFS are all uninformed searches—i.e., they

traverse the space using only information derived by the search-tree and not from

the e-states themselves—Best-First Search selects, at each step, the best state,

that is the one that is, supposedly, closer to the goal. The problem with this last

approach lies in finding a good function to calculate the score of each e-state and,

therefore, in understanding which e-state is the best one. These functions, known as

heuristics, have been deeply studied in the planning community and are, nowadays,

a standard concept. To avoid unnecessary clutter we will not discuss the theoretical

basis of this concept addressing the interested reader to Russell and Norvig [2010],

Keyder and Geffner [2008] for an exhaustive presentation of the topic.

As mentioned, the poor scalability of epistemic reasoners is an important issue.

Being the community relatively new, it is normal that most of the research efforts

are put into investigating the foundation of the problem rather than optimizing

what already exists. Nonetheless, having tools that, most of the time, have not

acceptable performances (with respect to classical planning, for example) limits

the proliferation of the solvers themselves. It is paramount, in our opinion, to

focus on the optimization of existing tools in order to have competitive epistemic

reasoners that can be employed by other researchers or even in real-world scenarios.

This would allow the community to gain more momentum and grow even faster.

To better understand how heuristics may help in scaling the solving process we

report, in Table 5.20, the comparison between the fastest configuration of EFP 2.1

128 5.2. EFP: an Epistemic Forward Planner

while using BFS and the same configuration while exploiting the perfect heuristic

(P-Heur). This heuristics represents the theoretical optimal we can hope to achieve

and, therefore, provides an excellent example of the potential of Best-First search.

P-Heur is assumed to always be able to derive the exact distance between an

e-state and the goal in constant time. Since we (unfortunately) do not have access

to such information, we emulated such behaviour by pre-computing the search-

space beforehand—this operation is not accounted for in the solving time—and

associating to each state its actual distance to the goal. While this is not really

helpful in optimizing the search2, it allows us to understand how well the solver

could perform with the right heuristics.

CC with ∥AG∥ = 3,F∥ = 15, ∥A∥ = 42
L EFP 2.1 P-Heur
3 0.16 0.06
4 1.07 0.07
5 28.73 0.09
6 118.60 0.13
7 1427.35 0.16

Table 5.20: Comparison between the solving times of an uninformed search (EFP 2.1) and
the theoretical optimal informed one (P-Heur) on the Collaboration and Communication
(CC) domain.

That is why, as the final contribution to EFP 2.1, we decided to focus on formalizing

some domain-independent heuristics for MEP. First of all, we implemented a module,

called heuristics_manager, that allows the planner to make use of heuristics as

black boxes. This allows any interested researcher to simply implement their

heuristics and directly test it on EFP 2.1, without having to know in detail the

solver structure. Moreover, we also formalized two diverse domain-independent

heuristics for MEP problems: the number of satisfied sub-goal and an updated

version of the epistemic planning graph presented in Le et al. [2018]. While these

two heuristics are completely formalized, they are yet to be fully implemented.
2This process requires to explore the whole search-tree before even starting to plan.

5. Comprehensive Multi-Agent Epistemic Planners 129

The first is a very simple heuristic that simply associates an higher evaluation to

e-states that satisfy more sub-goals. To better improve this heuristic we also

defined functions that allows “to break” complex goals into a conjunction of

simpler ones. That is, being each goal simply a belief formula that needs to

be satisfied, we devised a way of producing more sub-goals from a single one to

better distinguish between e-states.

The second heuristic we envisioned is an updated version of the epistemic

planning graph, that stems from a combination of the one presented in Le et al.

[2018] and concepts derived from the ASP solver presented in the next section.

This new planning graph is independent of the chosen e-state representation,

making it available for every EFP 2.1 configuration (except for the one where

custom update models are considered). While, as mentioned, we do not have

a complete implementation of this feature yet, we can provide the theoretical

details of its formalization.

First of all, let us quickly introduce the concept of planning graph in classical

planning. A far more detailed and precise introduction to this topic can be found

in Russell and Norvig [2010, chapter 10]. A planning graph is a special data structure

used to generate heuristics using an algorithm called GRAPHPLAN. Intuitively a

planning graph (Figure 5.2) is a directed graph organized into levels: first, a level S0

for the initial state, consisting of nodes representing each fluent literal that holds in

S0; then a level A0 consisting of all the ground actions that might be applicable in S0;

then, alternating, a level Si followed by Ai; until we reach a termination condition. A

more formal characterization of this structure is presented in Definition 5.1:

130 5.2. EFP: an Epistemic Forward Planner

(a) Problem description.

(b) Planning graph of the problem in Figure 5.2a.

Figure 5.2: Example of a planning graph. Images extrapolated from Russell and Norvig
[2010, chapter 10].

Definition 5.1: Planning Graph

Given a planning problem P = ⟨D, I,G⟩, the planning graph of P is an
alternate sequence of state levels and action levels S0, A0, . . . , Sk, Ak, . . . where

• S0 represents I;

• for i ≥ 0,

– Ai is the set of actions executable in Si; and
– Si+1 = Si ∪

(︂⋃︁
a∈Ai

Φ(Si, a)
)︂
. Where Φ is the transition function in

P .

A planning graph gives important information about the problem in polynomial

time. The idea is that, despite the possible errors, the level j at which a fluent literal

first appears is a good estimate of how difficult it is to achieve that fluent literal

from the initial state. Other important properties of the planning graph are that:

the estimation is always correct when it reports that the goal is not reachable; and

that it never overestimates the number of steps, generating an admissible heuristic.

The termination of the construction of the planning graph (when the search space

is finite) is also guaranteed through saturation. While the state levels are “easily”

5. Comprehensive Multi-Agent Epistemic Planners 131

defined in the classical settings, the same is not true in the epistemic scenario. In

fact, simply putting all the fluent literals in the states would not capture enough

information, and using complete e-states would result in a massive overhead, given

that they are graph-like structures and their manipulation is very resource-heavy.

The epistemic planning graph (ePG 1.0) presented in Le et al. [2018] solved this

problem by defining each state level as a set of partial Kripke structures. This

allowed capturing enough information without aggravating the ePG 1.0 resource

consumption. Nonetheless, this choice did not allow ePG 1.0 to work whenever a

goal with negated beliefs was requested by the problem. To overcome such problem

we decided to re-design the state level in a new version of the planning graph, called

ePG 2.0. In particular, we envisioned a state level that is comprised of a set of

instantiated belief formulae associated with a Boolean value. These formulae are

all the ones that appear in the domain description, i.e., single fluent literals, initial

descriptions, goals, actions preconditions, actions effects, observability conditions,

and so on. More practically, we envisioned the state level to be formed by two maps

P and Q. The former associates the extrapolated belief formulae to either True

or False, while the latter associate each fluent literal to a Boolean value.

Before providing more information on how ePG 2.0 may be used to compute e-

states score we need to present how the entailment (to check for action executability

and other conditions) and the execution of an action work in this structure. Let

us start by giving the definition of entailment.

Definition 5.2: ePG 2.0 Entailment

Given a state level Si, its relative maps Pi and Qi and a belief formula φ we
have that Si |∼ φ (where |∼ indicates the entailment in ePG 2.0) if:

• φ is fluent literal or its negation: Qi associates φ to ⊤; or

• φ is a belief formula: Pi associates φ to ⊤.

Since each fluent and each formula in ePG 2.0 is associated with a Boolean value, we

have that the entailment is simply derived by reading such values. This means that

whenever an information is associated to true in state level, then that information

132 5.2. EFP: an Epistemic Forward Planner

is entailed by the level. On the other hand, if a fluent or a formula is associated

to false in a level, then it is not entailed in that level.

We can now explain how an action execution works in ePG 2.0. Given an

executable3 action a and a state level Si we have that a could potentially set to

true the Boolean value associated with any fluent literal4 or belief formula. It is

important to notice that once any entry of the two maps is set to True, it will

always maintain this status. This behavior emulates the insertion of fluent literals

in the states level in the classical version of the planning graph. Intuitively, if the

effects of an action consider a fluent literal f then the update will check if this

fluent, its negation, or the belief formulae that have this f as part of their argument,

can be set to True. To check whether a fluent literal (or its negation) is verified

after the execution of an action it is not too intricate. In fact, a fluent can only

be manipulated by ontic actions which clearly state the new value of the fluent

literal they consider. That is, if an ontic action makes the fluent literal f True than

Q[f] = ⊤, otherwise, if the action sets f to be False, we will have Q[¬f] = ⊤. A

more precise definition of this procedure is illustrated in Algorithm 2.

Algorithm 2: Fluent value updater
Input :Q //The map ⟨fluent, bool⟩ of Si

a //The action executed on Si

Output :Q //The updated version of the input map
1 //Note that ℓ may also be a negated fluent
2 for fluent ℓ in Q.get_keys() do
3 if Q[ℓ].get_value() == ⊥ then
4 //An effect is considered if its condition are True
5 if a.get_effects().contains(ℓ) then
6 Q[ℓ].set_value(⊤)
7 end
8 end
9 end

10 return Q

3An action is executable in a state level Si if its executability conditions are entailed by Si.
4Let us remember that each fluent literal and its negation are independent and are considered

as separate entries in Q.

5. Comprehensive Multi-Agent Epistemic Planners 133

Contrarily to the fluent literals check, determining whether a belief formula is

verified after an action execution is not straightforward. The first complication

resides in the fact that an action verifies an infinite number of belief formulae

considering all the possible beliefs chains. That is why, we need to check only

the belief formulae of interest, i.e., the ones contained in P. For the sake of

the readability we will not attempt to describe how this check works using plain

text, instead, we will make use of a much more concise pseudo-code. Algorithm 3

is the function that manages this update. In particular, Algorithm 4 presents

this procedure for ontic actions while Algorithm 5 shows the one for sensing

and announcement actions.

Algorithm 3: Check belief formula after action execution
Input :P //The map ⟨belief_formula, bool⟩ of Si

a //The epistemic action executed on Si

Output :P //The updated map ⟨belief_formula, bool⟩ of Si

1 for belief_formula bf in P.get_keys() do
2 if P [bf].get_value() == ⊥ then
3 if P [bf].get_type() == ontic then
4 //Call to Algorithm 4
5 bool res = check_bf(bf, a, P)
6 else
7 //Call to Algorithm 5
8 bool res = check_bf_epi(bf, a, P , 0)
9 end

10 end
11 P [bf].set_value(res)
12 end
13 return P

134 5.2. EFP: an Epistemic Forward Planner

Algorithm 4: Check belief formula after ontic execution
Input : bf //The belief formula to verify

P //The map ⟨belief_formula, bool⟩ of Si

a //The ontic action executed on Si

Output :⊤ or ⊥ //Depending on the updated value of P [bf]
1 if P [bf].get_value() == ⊤ then
2 return ⊤
3 end
4

5 if bf.get_base_fluents().contains_one(a.get_effects()) then
6 if bf.get_type() == fluent_formula then
7 //For simplicity, assume fluent formulae of one fluent
8 P [bf].set_value(⊤)
9 return ⊤

10 else if bf.get_type() == single_ag_belief then
11 if fully_obs.contains(bf.get_agent()) then
12 //Recursive call to this function
13 return check_bf(bf.get_nested_bf(), a, P)
14 end
15 else if bf.get_type() == group_formula then
16 if fully_obs.contains(bf.get_group_agents()) then
17 //Recursive call to this function
18 return check_bf(bf.get_nested_bf(), a, P)
19 end
20 else
21 /∗Disjunction and conjunction of belief formulae follow

the standard semantics of these operators∗/
22 end
23 end
24 return ⊥

5. Comprehensive Multi-Agent Epistemic Planners 135

Algorithm 5: Check belief formula after epistemic execution
Input : bf //The belief formula to verify

P //The map ⟨belief_formula, bool⟩ of Si

a //The ontic action executed on Si

x //Label used to differentiate scenarios
Output :⊤ or ⊥ //Depending on the updated value of P [bf]

1 if P [bf].get_value() == ⊤ then
2 return ⊤
3 end
4

5 //We check also for negated effects for the Partial observers
6 if bf.get_base_fluent().contains_one_or_negated(a.get_effects()) then
7 if bf.get_type() == fluent_formula then
8 if a.get_effects().contains(bf.get_base_fluent()) and x == 0 then
9 return ⊤

10 else if x == 1 then
11 return ⊤
12 else
13 return ⊥
14 end
15 else if bf.get_type() == single_ag_belief then
16 if fully_obs.contains(bf.get_agent()) then
17 if x == 2 then
18 x = 1
19 end
20 return check_bf(bf.get_nested_bf(), a, P, x)
21 else if partially_obs.contains(bf.get_agent()) then
22 return check_bf(bf.get_nested_bf(), a, P, 2)
23 else if bf.get_type() == group_formula then
24 if fully_obs.contains(bf.get_group_agents()) then
25 return check_bf(bf.get_nested_bf(), a, P, 0)
26 else if partially_obs.contains_one(bf.get_group_agents()) then
27 return check_bf(bf.get_nested_bf(), a, P, 2)
28 else
29 /∗Disjunction and conjunction of belief formulae follow

the standard semantics of these operators∗/
30 end
31 end
32 return ⊥

136 5.2. EFP: an Epistemic Forward Planner

To summarize, the construction of the planning graph is comprised of the

following steps:

• First of all we build the initial state level, i.e., S0, where the maps P0 and Q0

will associate all the belief formulae of interest (the ones found in the domain

description) and all the fluent literals (also negated) to the Boolean value

False.

• We, then, check the conditions that are used to generate the initial state and

set to true all the beliefs formulae and fluent literals that are verified in this

e-state.

• After that, we iteratively execute the following procedure until the goal is

satisfied by one of the state levels or we reach a fixed point5:

– We check if the state level entails all the goal conditions. If it does, we

found the goal.

– If the goal is not found we then execute all the executable actions on the

state level producing a new one.

– If the new state differs, i.e., has some new verified fluent literals or belief

formulae, we reiterate the procedure, otherwise we reached the fixed

point and we conclude that the problem cannot be solved.

Finally, once the planning graph has been built, we can extrapolate useful infor-

mation following standard approaches presented in Le et al. [2018].

5A fixed point is reached whenever a state level and its successor are identical.

5. Comprehensive Multi-Agent Epistemic Planners 137

5.3 PLATO: an Epistemic Planner in ASP

In this section, following the idea originally proposed in Baral et al. [2010], we

explore the use of logic programming, in the form of Answer Set Programming

(ASP), to provide a novel implementation of a multi-agent epistemic planner. In

particular, we present an actual implementation of a multi-shot ASP-based planner,

called PLATO (ePistemic muLti-agent Answer seT programming sOlver), that can

reason on domains described using mAρ. The interest in this research direction

derives from the desire of having a planner which is usable, efficient, and yet

encoded using a declarative language. The ASP paradigm enables a concise and

elegant design of the planner, with respect to other imperative implementations,

facilitating the development of formal verification of correctness. In particular,

the declarative encoding allows us to provide formal proofs of results correctness,

which are presented later in this chapter. Moreover, the planner, exploiting an

ad-hoc epistemic state representation and the efficiency of ASP solvers, maintains

competitive performance results on benchmarks collected from the literature.

5.3.1 Modeling MEP using ASP

Let us now present the details of the multi-shot ASP encoding for a multi-agent

epistemic planning domain D = ⟨F ,AG,A, φini, φgoal⟩ (Definition 1.15) upon the

possibilities based semantics described in Section 2.2. Its core elements are the

entailment of DEL formulae, the generation of the initial state, and the transition

function. The encoding implements a breadth-first search exploiting the multi-shot

capabilities of clingo by Gebser et al. [2019].

Epistemic states

Let us start by defining how an e-state, and specifically a possibility, is defined

in PLATO. To do that, following Definition 2.9, we need to encode the possible

worlds and the agents’ beliefs. We use atoms of the form pos_w(T, R, P) and

believes(T1, R1, P1, T2, R2, P2, AG), respectively. Intuitively, the first atom

138 5.3. PLATO: an Epistemic Planner in ASP

identifies a possibility with the triple (T, R, P), while the second encodes an “edge”

between the possibilities (T1, R1, P1) and (T2, R2, P2), labeled with the agent AG.

Let us now focus in more detail on pos_w(T, R, P). P is the index of the

possibility. The variables T and R represent the time and the repetition of the

possibility P, respectively. It is important to notice that these two parameters are

necessary to uniquely identify a possibility during the solving process. The first

parameter tells us when P was created: a possibility with time T is created after the

execution of an action at time T. At a given time, it could be the case that two (or

more) possibilities share both the values of T and P. Thus, a third value, the repetition

R, is introduced with the only purpose to disambiguate between these cases. The

update of repetitions will be explained during the analysis of the transition function.

Intuitively, the index P is used during the generation of the initial state to name

the initial possible worlds. Afterward, when an action is performed, we create new

possibilities by updating the values of T and R. We do not need to modify the value of

P as well, since the update of time and repetition is designed to be univocal for each P.

Let i be an agent and u and v be two possibilities represented by the triples

(Tu, Ru, Pu) and (Tv, Rv, Pv), respectively. Then, we encode the fact that v ∈ u(i)

with the atom believes(Tu, Ru, Pu, Tv, Rv, Pv, i).

The truth value of each fluent is captured by an atom of the form holds(Tu, Ru,

Pu, F). The truth of this atom captures the fact that u(F) = 1. Finally, we specify

the pointed possibility, for a given time T, using atoms of the form pointed(T, R,

P). For readability purposes, in the following pages, we will identify a possibility u

by Pu rather than by the triple (Tu, Ru, Pu) when this will cause no ambiguity.

Entailment

To verify if a given belief formula (Definition 1.10) F is entailed by a possibility,

we use the predicate entails(P, F) that follows Definition 2.11, defined below

5. Comprehensive Multi-Agent Epistemic Planners 139

(with some simplifications for readability).

entails (P, F) :- holds(P, F), fluent(F).
entails (P, neg(F)) :- not entails(P, F).
entails (P, and(F1, F2)) :- entails(P, F1), entails(P, F2).
entails (P, or(F1, F2)) :- entails(P, F1).
entails (P, or(F1, F2)) :- entails(P, F2).
not_entails (P1, b(AG, F)) :- not entails(P2, F), believes(P1, P2, AG).
entails (P, b(AG, F)) :- not not_entails(P, b(AG, F)).
not_entails (P1, c(AGS, F)) :- not entails(P2, F), reaches(P1, P2, AGS).
entails (P, c(AGS, F)) :- not not_entails(P, c(AGS, F)).

The encoding makes use of an auxiliary predicate not_entails to check whether

a given formula F is not entailed by a possibility P1. For formulae of the type b(AG,

F) we require that all of the possibilities believed by AG entail F. Similarly, for

formulae of the type c(AGS, F) (where AGS represents a set of agents) we require

that all of the possibilities reached by AGS entail F. A possibility P1 reaches P2 if it

satisfies the following rules (where contains/2 is defined by a set of facts):

reaches(P1, P2, AGS):-believes(P1, P2, AG), contains(AGS, AG).
reaches(P1, P2, AGS):-believes(P1, P3, AG), contains(AGS, AG), reaches(P3, P2, AGS).

Initial state generation

As mentioned above, following Son et al. [2014], we assume the initial state to model

a finitary S5-theory. This means that the formulae that shape the initial state have

a constrained structure. While detailed descriptions of such formulae are explored in

Son et al. [2014], let us only provide a high-level characterization of these formulae

for the sake of simplicity. Let ψ be a fluent formula, f ∈ D(F) be a fluent, i ∈ D(AG)

be an agent, and let us use AG instead of D(AG) for the sake of readability. Consider

a mAρ statement of the form [initially φ] ∈ D; we have five cases:

(i) φ ≡ f/¬f: f must (not) hold in the pointed possibility.

(ii) φ ≡ CAG(f/¬f): f must (not) hold in each possibility of the initial state.

(iii) φ ≡ CAG(ψ): if ψ is a fluent formula that is not a fluent literal, then it must

be entailed from each possibility of the initial state.

140 5.3. PLATO: an Epistemic Planner in ASP

(iv) φ ≡ CAG(Bi(ψ) ∨ Bi(¬ψ)): there can be no two possibilities u and v such

that v ∈ u(i) and ψ is entailed by only one of them. Intuitively, this type of

formula expresses the fact that agent i believes whether ψ is true in the initial

state.

(v) φ ≡ CAG(¬Bi(ψ) ∧ ¬Bi(¬ψ)): this type of formula expresses the fact that

agent i does not believe whether ψ is true or false in the initial state. Hence,

given a possibility u, there must exist v ∈ u(i) such that u |= ψ and v ̸|= ψ (or

u ̸|= ψ and v |= ψ).

Formulae of types (i)– (iii) are used to build the fluent sets of the possible worlds

within the initial state. A fluent f is initially known if there exists a statement

[initially CAG(f)] or [initially CAG(¬f)]. In the former case, all agents will believe

that f is true, whereas in the latter that f is false. If there are no such statements

for f, then it is said to be initially unknown. Let uk be the number of initially

unknown fluents: we consider 2uk initial possible worlds, addressed by an integer

index P ∈ {1, . . . , 2uk}, one for each possible truth combination of such fluents.

For each initial possibility P and each initially known fluent F, we create an atom

holds(0, 0, P, F)6, since it is common belief between all agents that F is true

(we deal with negated fluents similarly). Moreover, through the atoms holds we

generate all the possible truth combinations for initially unknown fluents and we

assign each one of them to an initial possibility. We require all the combinations to

be different, thus each initial possibility represents a unique possible world.

An initial possibility is said to be good if it entails all of the formulae of type

(iii). We create a possible world pos_w(0, 0, P) for every good initial possibility

P. The initial pointed possibility is specified by pointed(0, 0, PP), where PP is

the (unique) good initial possibility that entails all of the type (i) formulae. Finally,

formulae of type (iv) are used to filter out the edges of the initial state. Let P1 and

P2 be two good initial possibilities; the atom believes(0, 0, P1, 0, 0, P2, AG)

holds if there are no initial type (iv) formulae ψ such that P1 and P2 do not agree
6Let us note that we use 0 to indicate the initial state time parameter.

5. Comprehensive Multi-Agent Epistemic Planners 141

on ψ. The construction of the initial state is achieved by filtering out the edges of a

complete graph—i.e., being G the set of good initial possibilities, ∀u ∈ G, ∀i ∈ AG

we have that u(i) = G. We can observe that type (v) formulae do not contribute to

this filtering, hence we do not consider them in the initial state generation.

Transition function

The transition function calculates the resulting state after the execution of an action

at time T > 0. mAρ makes use of three distinct types of actions—ontic, sensing,

and announcement (Definition 2.12)—but for all of them the implementation of

executability conditions is the same. For example, suppose that at time T we execute

the ontic action act: the statement [act causes f if φ] tells us that in order to

apply the action effect f on a possibility u we first need to satisfy the condition

u |= φ. To this end, we introduced the predicate is_executable_effect(T, ACT,

T2, R2, P2, E). If such an atom holds, then it denotes that the effect E of the

action ACT performed at time T is executable in the possibility (T2, R2, P2). Without

loss of generality, we represent an action instance by a unique action (using fresh

actions names). Let us describe how we have modeled these actions in ASP.

Ontic actions Let ACT be an ontic action executed at time T and let u =

(T-1, RP, PP) be the pointed possibility at time T-1. Intuitively, when an ontic

action is executed, the resulting possibility u′ is calculated by applying the action

effects on u and also on the possibilities w ∈ u(i), for each fully observant agent i;

and so on, recursively. Hence, we apply the action effects to all of the possibilities

w that are reachable with a path labeled with only fully observant agents (briefly

denoted as fully observant path). This concept is key to understand how the possible

worlds are computed. Then pos_w (short for possible_world) is defined as follows:

pos_w (T, R2 + MR + 1, P2):-
pointed(T-1, RP, PP), pos_w(T2, R2, P2), T2<T,
reaches(T-1, RP, PP, T2, R2, P2, AGS), subset(AGS, FACT).

where MR is the maximum value of the parameter repetition among all the possibilities

at time T-1 and FACT represents the set of fully observant agents of ACT. Hence, if

142 5.3. PLATO: an Epistemic Planner in ASP

(T2, R2, P2) is a possibility that is reachable by a fully observant path at time T-1,

then we create a new possibility (T, R2 + MR + 1, P2). When the body of the rule is

satisfied, we say that P2 is updated. For short we will refer to the updated version

of P2 as P2′. The time corresponds to the step number when the possibility was

created; the repetition is calculated by adding to R2 the maximum repetition found

at time T-1, plus one; finally, P2 is the name of the new possibility.

The pointed possibility at time T is pointed(T, 2*MR+1, PP). Notice that,

since the maximum repetition at time 0 is 0 (by construction of the initial state) and

since at time T we set the repetition of the pointed possibility to 2*MR+1, it follows

that the maximum repetition at each time is associated with the pointed possibility

itself. In this way, we can always create a unique triple of parameters for each new

possibility. At the moment, the plans that PLATO can handle in reasonable times

have lengths that limit the exponential growth of such value within an acceptable

range. In fact, even for the largest instance that was tested on EFP 2.1, the length of

the optimal plan was less than 20 (PLATO could not find a solution for such instance

before the timeout). Nonetheless, we plan a more efficient design of the update of

the repetition values through hashing functions or bit maps that would limit the

growth of the repetition to a polynomial rate. This would achieve a polynomial

growth of the repetition value, allowing the solver to handle much longer plans.

Next, we must state which fluents hold in the new possibilities. For each

fluent F that is an executable effect of ACT, we impose holds(P2′, F) (and similarly

for negative effects). The remaining fluents will hold in the updated possibility

only if they did in the old one.

Finally, we deal with the agents’ beliefs. Let P1, P2 be two updated possibilities

and let AG be a fully observant agent. If believes(P1, P2, AG) holds, we impose

believes(P1′, P2′, AG). Otherwise, if AG is oblivious, we impose believes(P1′,

P2, AG) exploiting the already calculated possibility P2 to reduce the number

of pos_w atoms.

5. Comprehensive Multi-Agent Epistemic Planners 143

Sensing/Announcement actions As shown in Definition 2.12 behavior of

sensing and announcement actions are similar. The generation of the possible worlds

is also similar to that of ontic actions. Let ACT be a sensing or an announcement

action and let PP and P2 be two possibilities such that PP is the pointed one at

time T-1 and P2 is reachable from PP. We update P2 in the following cases:

(i) P2 = PP (here we also set P2′ as the pointed possibility at time T);

(ii) P2 is reached by a fully observant path and it is consistent with the effects of

ACT;

(iii) P2 is reached by a path that starts with an edge labeled with a partially

observant agent and that does not contain oblivious agents.

The pointed possibility must always be updated to be consistent with the changes,

after an action is performed (that is, we do not want to carry old information

obtained in previous states). Similar to ontic actions, condition (ii) deals with the

possibilities believed by fully observant agents; if i is fully observant, then she must

only believe those possible worlds that are consistent with the effects of ACT. Finally,

condition (iii) deals with partially observant agents: since such an agent is not

aware of the action’s effects, we do not impose P2′ to be consistent with the action’s

effects. Also, we restrict the first edge to be labeled by a partially observant agent

to avoid the generation of superfluous possible worlds (namely, worlds that are

not believed by any agent). In fact, the contribution to the update of the possible

worlds by fully observant agents is entirely captured by condition (ii).

We create a possible world P2′ at time T for each P2 that satisfies one of

the conditions above. Since sensing and announcement actions do not alter the

physical properties of the world, we impose holds(P2′, F) if holds(P2, F), for

each fluent F (inertia).

Let AG be a partially observant agent. If believes(P1, P2, AG) holds, then

we will impose believes(P1′, P2′, AG), since partially observant agents are not

aware of the effects of the action. If AG is fully observant, we also add the condition

144 5.3. PLATO: an Epistemic Planner in ASP

that P1 and P2 are both (or neither) consistent with the effects of the actions.

The purpose of this condition is twofold: first, we update the beliefs of the fully

observant agents; second, we maintain the beliefs of partially observant agents

with respect to the beliefs of the fully observant ones. We deal with oblivious

agents exactly as for ontic actions.

Optimizations

To minimize the amount of ground pos_w atoms, we designed the function so that

it reuses, whenever possible, an already computed possibility. In this way, we

efficiently deal with the beliefs of oblivious agents.

We were also able to significantly speed up the initial state generation by

imposing a complete order between the initial possible worlds with respect to their

fluents. Specifically, let P1 and P2 be two initial possibilities. Let MFi = #max {

F : holds(Pi, F), not holds(Pj, F) }, with i ̸= j. Then we impose that if

P1 < P2, then it must also hold that MF1 < MF2. Since it could be the case that there

exist finitely many initial states, by implementing this constraint we are able to

generate a unique initial state while discarding the (possible) other equivalent ones.

Multi-shot encoding

Following the approach of Gebser et al. [2019] we divided our ASP program into

three main sub-programs, where the parameter t stands for the execution time of

the actions: (1) base: it contains the rules for the generation of the initial state

(t = 0), alongside with the instance encoding; (2) step(t): it deals with the plan

generation (t > 0) and with the application of the transition function; and (3)

check(t): it verifies whether the goal is reached at time t ≥ 0.

The sub-program check(t) contains the external atom query(t) that is used

in the constraint: :- not entails(t, R, P, F), pointed(t, R, P), goal(F),

query(t). The atom query(t) allows the solver to activate the constraint above

only at time t (with the method assign_external) and to deactivate it when

we move to time t + 1 (method release_external). Using the Python script

provided by Gebser et al. [2019], we first ground and solve the sub-program base

5. Comprehensive Multi-Agent Epistemic Planners 145

and we check if the goal is reached in the initial state (t = 0); in the following

iterations, the sub-programs step(t) (t > 0) are ground and solved; we check

the goal constraint until the condition is satisfied.

5.3.2 Experimental Evaluation

In this Section we compare PLATO to the multi-agent epistemic planner EFP 2.1.

All the experiments were performed on a 3.60GHz Intel Core i7-4790 machine with

32 GB of memory and with Ubuntu 18.04.3 LTS, imposing a time out (TO) of

25 minutes and exploiting ASP’s parallelism on multiple threads. All the results

are given in seconds. From now on, to avoid unnecessary clutter, we will make

use of the following notations:

• L: the length of the optimal plan;

• d: the upper bound to the depth of nested modal operators B in the DEL

formulae;

• K-BIS/P-MAR: the solver EFP 2.1 using the best configuration based on

Kripke structures and possibilities, respectively;

• single/multi: PLATO using the single-shot/multi-shot encoding, respec-

tively;

• many/frumpy: multi using the clingo’s configuration many/frumpy, respec-

tively;

• bis: multi implemented with a visited state check based on bisimulation

(following the implementation by Dovier [2015]).

We report only the results of the clingo’s search heuristic configurations many

and frumpy as they were the most performing ones in our set of benchmarks.

Although generally they show similar behaviors, as shown in Table 5.21a, in larger

instances the time results differ substantially. In the results, when only multi is

specified, we considered the most efficient configuration on the specific domain.

146 5.3. PLATO: an Epistemic Planner in ASP

SC: ||AG|| = 9, ||F|| = 12, ||A|| = 14

L many frumpy K-BIS P-MAR
4 .24 .24 .03 .007
6 2.56 2.49 .16 .04
8 36.79 38.34 4.23 .30
9 204.52 146.343 5.79 .83
10 TO 839.27 7.36 1.78

(a) Runtimes for Selective Communication
(SC).

GR: ||AG|| = 3, ||F|| = 9, ||A|| = 24

L Total Ground Solve Atoms
3 .97 .60 .36 28’615
4 4.25 2.24 2.01 42’022
5 32.83 2.52 30.31 71’482
6 211.69 5.27 206.41 140’305
7 1066.80 16.94 1049.86 302’623

(b) Runtimes for Grapevine (GR).

CB: ||AG|| = 3, ||F|| = 8, ||A|| = 21

L multi bis K-BIS P-MAR
2 .11 .11 .006 .001
3 .20 .24 .10 .02
5 1.21 4.21 1.44 .37
6 6.69 31.82 14.62 2.93
7 46.48 278.80 38.26 6.99

(c) Runtimes for Coin in the Box (CB).

AL: ||AG|| = 2, ||F|| = 4, ||A|| = 6

d multi K-BIS P-MAR
2 14.89 .42 .07
4 15.63 .64 .11
6 15.96 13.51 2.44
8 17.55 883.87 150.92
C 128.02 .43 .08

(d) Runtimes for Assembly Line
(AL).

CC_1: ||AG|| = 2, ||F|| = 10, ||A|| = 16 CC_2: ||AG|| = 3, ||F|| = 13, ||A|| = 24

L single multi K-BIS P-MAR single multi K-BIS P-MAR
3 48.74 6.52 .08 .02 153.76 14.07 .13 .03
4 188.32 8.74 .16 .03 TO 28.02 .54 .10
5 TO 7.68 1.14 .16 TO 16.13 4.89 .60
6 1222.67 10.83 4.42 0.64 TO 14.84 12.66 1.71
7 TO 30.08 16.06 2.61 TO 56.48 142.06 12.37

(e) Runtimes for Collaboration and Communication (CC).

Table 5.21: (a) Comparison of frumpy, many and EFP 2.1 on SC. (b) Total, grounding
and solving times for GR using multi. The last column reports the number of ground
atoms. (c) Comparison of multi and bis on CB. (d) Comparison of PLATO and EFP 2.1
on AL (C identifies that the executability conditions are expressed through common
beliefs). (e) Comparison of single, multi and EFP 2.1 on CC.

To evaluate the behavior of PLATO with respect to the entailment of DEL

formulae, we exploited the AL domain (Table 5.21d), where the executability

conditions of the actions have depth d. The entailment of belief formulae with

higher depth is handled efficiently by PLATO, although the use of common beliefs

in the executability conditions leads to worse results. This is because the number

of reached atoms is substantially higher than the number of believes atoms

(required in the entailment of C and B formulae, respectively). Notice that in

ASP the entailment of each formula, independently from its depth, is handled by a

ground atom and, therefore, a higher depth does not impact the solving process. On

the other hand, the entailment in EFP 2.1 is handled by exploring all the paths of

5. Comprehensive Multi-Agent Epistemic Planners 147

length d of the state, causing higher cost performances during each entailment check.

To investigate the contribution of the grounding and solving phases, we summed

the computation times of the clingo functions ground() and solve() for each

iteration. Table 5.21b shows a major contribution of the solving phase, hence

indicating an efficient grounding. This permitted us to consider larger instances and

to compete with other imperative approaches. The implementation of bisimulation

within the multi-shot encoding leads to less efficient results (as shown in Table 5.21c),

due to a much heavier contribution of the grounding phase.

Finally, we compare the single-shot/multi-shot encodings in Table 5.21e. The

latter approach leads to significantly better results: the clingo’s option –stat

revealed a smaller number of conflicts in the majority of the benchmarks. As

explained by Gebser et al. [2019], this is due to the reuse of nogoods learned

from previous solving steps.

5.3.3 Correctness of PLATO

Declarative languages such as ASP allow a high-level implementation, facilitating

the derivation of formal verification of correctness. Considering a domain D; we

denote the set of the belief formulae that can be built using the fluents in D(F) and

the propositional/modal operators by D(BF). We denote the transition function

of PLATO by Γ : D(AI) × D(S) → D(S) ∪ {∅} (where D(AI) and D(S) are

defined as in Definition 1.15). Finally, we express the entailment with respect to

mAρ and PLATO with |=Φ and |=Γ, respectively. Each main component of the

planner is addressed by one proposition among Propositions 5.1 to 5.3. Proofs

of these properties are reported in Appendix A.5.

Proposition 5.1: PLATO Entailment Correctness

Given a possibility u ∈ D(S) we have that ∀ψ ∈ D(BF) u |=Φ ψ iff u |=Γ ψ .

Proposition 5.2: PLATO Initial State Construction Correctness

Given two possibilities u, v ∈ D(S) such that u is the initial state in mAρ and
v is the initial state in PLATO then ∀ψ ∈ D(BF) u |=Φ ψ iff v |=Γ ψ.

148 5.3. PLATO: an Epistemic Planner in ASP

Proposition 5.3: PLATO Transition Function Correctness

Given an action instance a ∈ D(AI) and two possibilities u, v ∈ D(S) such that
∀ψ ∈ D(BF) u |=Φ ψ iff v |=Γ ψ then ∀ψ ∈ D(BF) Φ(a, u) |=Φ ψ iff Γ(a, v) |=Γ
ψ.

These results allowed us to verify the empirical correctness of the planner EFP 2.1.

In all of the conducted tests, the two planners exhibited the same behavior. In the

same way, PLATO can be used to verify empirically the correctness of any multi-

agent epistemic planner that is based on a semantics equivalent to the one of mAρ.

Finally, as the plan existence problem in the MEP setting is undecidable [Bolander

and Andersen, 2011], all the planners that reason on DEL are incomplete. Since

infinitely many e-states could be potentially generated during a planning process,

in general, both EFP 2.1 and PLATO are unable to determine if a solution for a

planning problem exists (even when checking for already visited states).

Nothing in life is as important as you think it is when
you are thinking about it.

— Daniel Kahneman
Thinking, Fast and Slow

[Kahneman, 2011]

6
“Fast and Slow” Epistemic Planning

Contents
6.1 Background . 149

6.1.1 Theories of Human Decision Making 151
6.1.2 AI Thinking, Fast and Slow 153

6.2 MEP System-1 and System-2 153
6.2.1 Meta-cognition . 156

6.3 A Fast and Slow Epistemic Architecture 159
6.3.1 E-PDDL: Standardized MEP Problems Language 159
6.3.2 The Overall Architecture 165

6.1 Background

Artificial Intelligence-based systems have been the focal point of computer science

research in the last years. This led to the creation of several automated tools and

successful applications that are pervading our everyday life. Nonetheless, most of

these systems can be considered instances of narrow AI : i.e., they are, generally,

focused on a limited set of abilities and goals. Ultimately, these approaches are

becoming more and more efficient in dealing with their pre-established areas of

interest thanks to improved algorithms and techniques, and also, especially in the

case of Machine Learning (ML) systems, thanks to the availability of huge datasets

149

150 6.1. Background

and computational power [Marcus, 2020]. On the other hand, all of these tools

still lack many capabilities that, we humans, naturally consider to be included

in a notion of “intelligence”. Examples of these capabilities are generalizability,

robustness, explainability, causal analysis, abstraction, common sense reasoning,

ethical reasoning, as well as a complex and seamless integration of learning and

reasoning supported by both implicit and explicit knowledge. That is why the

majority of the AI community is attempting to address these current limitations and

it is trying to create systems that display more “human-like qualities”. One of the

central debates is whether end-to-end neural networks or symbolic and logic-based

AI approaches alone can achieve this goal or whether we need to integrate these

techniques to achieve the desired AI system.

We believe the integration route to be the most promising. This idea is also

supported by several results that have been obtained along this line of work.

For example, Marcus [2020] argues that symbolic and logic-based reasoning is

paramount to improve the robustness of AI systems. As pointed out in Besold et al.

[2017], Kotseruba and Tsotsos [2020], several research groups are building “hybrid”

approaches that use both machine learning and symbolic reasoning techniques,

employing a so-called neuro-symbolic AI approach.

We argue that a better comprehension of how humans have, and have evolved to

obtain, these advanced capabilities can inspire innovative ways to imbue Artificial

Intelligence systems with these competencies. More precisely, we analyzed some

of these theories, with a special focus on the theory of thinking fast and slow

presented by Kahneman [2011], and attempted to translate them into an AI

environment, conjecturing that this will lead to an advancement in machines

capabilities. This chapter gives a brief and high-level overview of this general

approach, providing also an early implementation of a “hybrid” AI architecture

that focuses on the MEP setting.

6. “Fast and Slow” Epistemic Planning 151

6.1.1 Theories of Human Decision Making

According to the book “Thinking, Fast and Slow” by Kahneman [2011], humans’

decision-making processes are guided by the cooperation of two capabilities, that,

are referred to as “Systems”. In particular, System-1 provides tools for intuitive,

imprecise, fast, and often unconscious decisions (“thinking fast”), while System-2

handles more complex situations where logical and rational thinking is needed to

reach a complex decision (“thinking slow”). The former is guided mainly by intuition

and experience rather than deliberation and allows to quickly formulate answers

to very simple questions. Such answers may be sometimes wrong, mainly because

of unconscious biases or because they rely on shortcuts, and usually come with no

explanation. However, System-1 is able to build models of the world that, although

inaccurate and imprecise, can fill the knowledge gaps through causal inference and

allow us to respond reasonably well to the many stimuli of our everyday life. A

typical example of a task handled by System-1 is finding the answer to a very

simple arithmetic calculation, or reaching out to grab something that is going to

fall. We use our System-1 about 95% of the time when we need to make a decision.

On the other hand, whenever the problems to be solved starts to become too

demanding, System-2, thanks to the access to additional “computational resources”

and rational/logical thinking, is the one that is in charge of their resolution. A

typical example of a problem handled by System-2 is solving a complex arithmetic

calculation, or a multi-criteria optimization problem. To do this, humans need to

be able to recognize that a problem goes beyond a threshold of cognitive ease and

therefore they need to activate a more global and accurate reasoning machinery.

Hence, introspection is essential in this process.

Other than the idea of problem difficulty System-1 and System-2 discern which

problem they should tackle based on the experience accumulated on the problem

itself. That is, when a new non-trivial problem has to be solved, it is handled

by System-2. However, certain problems over time, and therefore after having

accumulated a certain amount of experience, pass on to System-1. The reason

is that the procedures used by System-2 to find solutions to such problems also

152 6.1. Background

accumulate examples that System-1 can later use readily with little effort. A typical

example is reading text in our native language. However, this does not happen

with all tasks, e.g., finding the correct solution to complex arithmetic questions.

Finally, Kahneman theorizes that System-2 may employ heuristics to facilitate the

exploration of the search space, especially when this is very large. These heuristics

could derive from System-1 and usually help in focusing the attention only on the

most promising parts of the space, allowing System-2 to work with manageable

time and space. Thanks to this “structure”, humans are able to consider diverse

levels of abstraction, adapt, and generalize their experiences while also being able

to multi-task when using their System-1. We envisioned System-2 to be sequential,

given that it requires full attention, limiting the number of complex problems that

can be solved by humans in parallel to one. Let us note, however, that System-1

and System-2 are not systems in the multi-agent sense, but rather they encapsulate

two wide classes of information processing.

Kahneman’s theory gives a detailed account on how we make decisions, while

others conjecture what are the reasons behind the evolution of our reasoning scheme—

e.g., Harari [2015] identifies the ability to conceive and communicate high-level

stories as one of the main reasons. Nevertheless, in most of these theories it is clear

that the notions of consciousness and abstraction are important to identify the traits

of intelligence. These provide the ability to consciously focus attention on a limited

set of features, while deferring others, to process a specific task in depth. Graziano

[2013], Graziano et al. [2020] envisioned two forms of consciousness in human

beings: the I-consciousness (I for Information) and the M-consciousness (M for

mysterious). The first one refers to the ability to solve (possibly complex) problems,

by recognizing necessary processing steps in specific (even new) contexts, to tackle a

desired problem. Again, these concepts seem to intertwine with Kahneman’s theory.

The former could be seen as another way to identify System-2 since it has to do

with considering a problem and harnessing the relevant faculties of our cognition

to devise a plan to solve it. The latter refers to our ability to build a simplified,

approximate, and subjective model of peoples’, both ourselves and others, minds,

6. “Fast and Slow” Epistemic Planning 153

beliefs, and intentions. Such low-fidelity model building can be linked to System-1,

as System-1 is able to form a rapid but usually inexact model of the world.

6.1.2 AI Thinking, Fast and Slow

The theories described in the previous paragraph, as well as their connections, shed

some light on which competencies provide humans the ability to solve a diverse

set of simple and complex problems; understand broad contexts robustly; adapt

readily; and ultimately cooperate. These competencies are, arguably, what makes

our intelligence broad, in opposition to the narrow one displayed by modern AI

systems. This difference makes arise several interesting research questions about

the capabilities that AI systems should include in the future. The “Blue Sky” paper

by Booch et al. [2021] reports some of these questions. In this chapter, we will focus

on the first and part of the fifth research questions posed by Booch et al.. Namely:

1. “Should we clearly identify the AI System-1 and System-2 capabilities? What

would their features be? Should there be two sets of capabilities or more?”

5. “How do we model the governance of System-1 and System-2 in an AI? When

do we switch or combine them? Which factors trigger the switch? [. . .]”

While the authors of the Blue Sky paper did not define these research objectives

for any particular AI system, in this chapter we will try to address them in the

Multi-agent Epistemic Planning setting.

6.2 MEP System-1 and System-2

Two of the prominent lines of work in AI, i.e., machine learning and symbolic

reasoning, seem to embody (even if loosely) the two Systems presented above. In

particular, ML is a data-driven approach to AI and shares with System-1 its ability

to build (possibly imprecise and biased) models from sensory data. Perception

activities, such as seeing, that in humans are handled by System-1, are currently

addressed with machine learning techniques in AI. However, some traits of System-1

do not seem to be present, at least for now, in ML. Examples of these are the ability to

154 6.2. MEP System-1 and System-2

grasp basic notions of causality and common-sense reasoning. Similarly, System-2’s

capability to solve complex problems using a knowledge-based approach is somewhat

emulated by AI techniques based on logic, search, and planning, that make use

of explicit and well-structured knowledge. While the parallelism ML–System-1

and logic programming–System-2 represents a starting point in developing an

automated fast and slow AI, we should not assume these two techniques to be

the exclusive representative of the respective System.

In what follows, we will try to give a characterization of both a System-1 and

a System-2 transposition to automated tools, referred to as solvers for brevity.

We will start with general definitions of such solvers only to present, later in

the chapter, actual implementations of System-1 and System-2 reasoners in the

epistemic setting. We will make use of three models to represent key modules of our

abstract Reasoner1. In particular, the model of self is used to store the experience

of the architecture, the model of the world contains the knowledge accumulated

by the system over the external environment and the expected tasks, while the

model of others contains the knowledge and beliefs about other agents who may

act in the same environment. Finally, the model updater acts in the background

to keep all models updated as new knowledge of the world, of other agents, or

new decisions are generated and evaluated.

The general characterization of a System-1 solver, triggered immediately when

the problem is presented to the Reasoner, does not require many factors.

• These solvers are assumed to rely on the past experience of the Reasoner itself.

• Moreover, we assume that the running time for System-1 approaches to be

independent of the input and, instead, to depend on the experience accumulated

by the overall architecture, in the model of self.
1We will use this term to indicate an abstract entity that acts as a proxy for an architecture

that contains and manages various System-1 and System-2 solvers. Let us imagine the Reasoner
to be an artificial version of the human body which has its low-level reasoning capabilities defined
by various System-1 and System-2.

6. “Fast and Slow” Epistemic Planning 155

• Finally, we consider a System-1 solver to be an entity that relies on “intuition”

(with a slight abuse of notation).

Considering these characteristics, the next question that naturally arises is can

MEP ever be considered as a System-1 task, considering that epistemic planners,

in literature, always rely on look-ahead strategies? We considered some ideas that

could help us develop a System-1 epistemic planner. Among those, only a few

were not using search methods (intensively) but rather mostly relied on experience.

Finally, we identified a feasible, yet functional, way to exploit experience in the

epistemic planning setting. The idea is to make use of pre-computed plans; that

is, System-1 can be used to determine which of the plans already generated by

past experiences is the one that “fits the best” the current problem. Of course,

determining if an already computed plan is a good choice or not for the current

problem is a difficult research question on its own. Since the focus of this last

chapter is to devise an overall fast and slow architecture for epistemic planning

rather than optimizing its internal components, we decided to use a very simple

criterion to select the best fitting plan. In particular, System-1 selects, among

past solutions for the same domain, the pre-computed plan that satisfies the most

number of sub-goals of the problem that is being tackled. Let us remark that this

is just an early-stage idea that could certainly be enriched and optimized.

Our Reasoner is a System-1-by-default architecture: whenever a new problem

is presented, a System-1 solver with the necessary skills to solve the problem

starts working on it, generating a solution and a confidence level. This allows to

minimize the resource consumption making use of the much faster System-1 solving

process when there is no need for System-2—that is when the solution proposed

by System-1 is “good enough”. Nevertheless, as for the human brain, System-1

may encounter problems that it cannot solve, either due to its lack of experience

or the inherent intricacy of the problem itself. These situations require, then,

the use of more thought-out resolution processes, generally provided by System-2

approaches. Notice that we do not assume System-2 solvers to be always better

than System-1 solvers: given enough experience, some tasks could be better solved

156 6.2. MEP System-1 and System-2

by System-1 solvers. This behavior also happens in human reasoning [Gigerenzer

and Brighton, 2009]. In the particular case of MEP, we can consider as System-2

solving procedures the tools that employ traditional planning strategies. These

can be, for example, the planner RP-MEP presented by Muise et al. [2015] and

EFP 2.1 presented in Chapter 5. While these two solvers adopt different strategies

to solve a Multi-agent Epistemic Planning problem, they both explore the search

space and do not rely on experience.

6.2.1 Meta-cognition

One of the research questions posed by Booch et al. [2021] asks how “do we model

the governance of System-1 and System-2 in an AI?”. To address this we decided

to focus on the idea of meta-cognition as firstly defined by Flavell [1979], Nelson

[1990]. This means that we want our Reasoner to be equipped with a set of

mechanisms that would allow it to both monitor and control its own cognitive

activities, processes, and structures. The goal of this form of control is to improve

the quality of the system’s decisions [Cox and Raja, 2011]. Meta-cognition models

have been largely studied [Cox, 2005, Kralik et al., 2018, Kotseruba and Tsotsos,

2020, Posner, 2020] in the past years. Among the various proposed modalities, we

envisioned our Reasoner to have a centralized meta-cognitive module that exploits

both internal and external data and arbitrates between System-1 and System-2

solvers. Let us note that this module is structurally and conceptually different from

an algorithm portfolio selection [Kerschke et al., 2019, Tarzariol, 2019].

We propose a meta-cognitive (MC) module that itself follows the thinking fast

and slow paradigm. This means that our MC module is comprised of two main

phases: the first one takes intuitive decisions without considering many factors,

while the second one is in charge of carefully selecting the best solving strategy,

considering all the available elements whenever the first phase did not manage to

return an adequate solution. We will refer to the former with MC-1 and to the

latter with MC-2. MC-1 defines the System-1 part of the metacognitive process

and, therefore, it activates automatically as a new task arrives. This module is

6. “Fast and Slow” Epistemic Planning 157

in charge of deciding whether to accept the solution proposed by the System-1

solver or to activate MC-2. MC-1 takes this decision considering the confidence of

the System-1 solver: if the confidence, which usually depends on the amount of

experience, is high enough, MC-1 adopts the System-1 solver’s solution.

If MC-1 decides that the solution of the System-1 solver is not “good enough”,

it engages MC-2. Intuitively, this module needs to evaluate whether to accept the

solution proposed by the System-1 solver or which System-2 solver to activate for

the task. To do this, MC-2 compares the expected reward for the System-2 solver

with the expected reward of the System-1 one: if the expected additional reward

of running the System-2 solver, compared to the System-1 one, is large enough,

then MC-2 activates the System-2 solver. MC-2, following the human reasoning

model [Shenhav et al., 2013], is designed to avoid costly reasoning processes unless

the additional cost is compensated by an even greater expected reward for the

solution that the System-2 solver will devise.

In what follows, we try to provide a “concrete” view of the System-1/System-2

framework for the Multi-agent Epistemic Planning setting. The MC-1 schema

does not require a graphical visualization given that it only has to execute one

decision. The same is not true for MC-2. That is why we will present a schematic

view of this module in Figure 6.1. In the schema we will make use of the following

notations for the sake of readability:

• Planner-1 and Planner-2 indicate the planners RP-MEP [Muise et al., 2015]

and EFP 2.1, respectively.

• Sys1 represents the solution obtained by the System-1 solver.

• The variables d and limits are given as input.

• R(S) represents a formula that computes the reward of choosing the solver S.

This formula is fully characterized by Ganapini et al. [2022]. Since we want

our schema to be at an intuitive level we will not provide further details.

158 6.2. MEP System-1 and System-2

• Finally, the methods to simplify the problems are, at the moment, to restrict

the belief formulae depth or to eliminate some sub-goals.

Max Depth d

Resource
Consumption

< limitsNo

Sub-correct
solutions
allowed

Yes

Semplificate
the problem

Validate solution and update the `Table', i.e., the experience, that
contains `` difficulty,planner resources" data for future usages

Good enough
Solution?

No
Done

Estimate problem Difficulty using of fluents, agents, actions, etc.
(This value only depend on the input and not on the solver).

Dynamic
Common

Knowledge

Yes

Yes

No

No

Estimate the Resources Consumption of Pla w.r.t. the Difficulty
of the problem using past experiences.

No

Opt-Out

Is
R(Pla) > R(Sys1)

Yes

Simplificate
the problem

Pla = Planner-1 Pla = Planner-2

Yes

Sys1 Pla

No

Yes

Problem Parsing

Figure 6.1: The schema of MC-2.

6. “Fast and Slow” Epistemic Planning 159

6.3 A Fast and Slow Epistemic Architecture

In this section, we will provide a description of an early implementation of the

architecture described before. This tool can be found at https://github.com/

FrancescoFabiano/MetacognitiveEpistemicPlanning and, while tries to emu-

late the behavior discussed in the previous sections, it also adopts some simpli-

fications given that is still a premature version. Nonetheless, this tool is able to

accomplish the basic functionalities and we believe it to be an excellent starting

point to analyze the thinking fast and slow paradigm in MEP. Moreover, we

envisioned this architecture to be easily modified by the other research groups,

which can easily inject new (System-1/System-2) solvers and modify the MC

modules to create a well-structured epistemic reasoner that will benefit from all

the community research efforts.

6.3.1 E-PDDL: Standardized MEP Problems Language

As the first step in implementing our architecture, we addressed the problem of

having a unified specification language. In fact, it is necessary that problems can be

“understood” by all the solvers that could potentially tackle them. Over the years,

the MEP community has developed multiple approaches with varying behaviors and

specification languages. And while the diversity of approaches has led to a deeper

understanding of the problem space, the community now lacks a standardized way

to specify MEP problems. To address the situation, we propose a unified input

description language for the epistemic setting, namely the Epistemic Planning

Domain Definition Language or E-PDDL for short. Consequently, E-PDDL will

represent the input for our meta-cognitive architecture.

E-PDDL, as the name clearly shows, inherits its foundations from one of the

most adopted action languages: PDDL. The field of planning has seen many repre-

sentations. For example, in classical planning, there was STRIPS [Fikes and Nilsson,

1971], Action Description Language (ADL) [Pednault, 1994] and SAS+ [Bäckström,

1995] before Planning Domain Description Language (PDDL) [McDermott et al.,

1998, Fox and Long, 2003] standardized the notations. Nowadays, planners routinely

https://github.com/FrancescoFabiano/MetacognitiveEpistemicPlanning
https://github.com/FrancescoFabiano/MetacognitiveEpistemicPlanning

160 6.3. A Fast and Slow Epistemic Architecture

use PDDL for problem specification even if they may convert to other representations

later for solving efficiency [Helmert, 2009]. PDDL envisages two files, a domain

description file which specifies information independent of a problem like predicates

and actions, and a problem description file which specifies the initial and goal states.

In PDDL, a planning environment is described in terms of objects in the world,

predicates that describe relations that hold between these objects, and actions that

bring change to the world by manipulating relations. A problem is characterized

by an initial state, together with a goal state that the agent wants to transition

to, both states specified as configurations of objects. When planning is used for

epistemic reasoning, the objects in the problem can be physical (real-world objects)

as well as abstract (knowledge and beliefs).

Let us now present E-PDDL, making use of the Coin in the Box domain

(Planning Domain 2.1) to better explain some of the features. Let us remark that

the syntax has been chosen with the objective of minimizing the difference with

standard PDDL while providing a general epistemic input language. We will start

by showing the syntax of the problem-domain—that contains the general settings

of the problem—and then we will illustrate how a problem-instance—that contains

specific objects, initial conditions, and goals—is characterized. In particular, in

Listings 6.1 we present the characterization of the Planning Domain 2.1 problem-

domain and in Listings 6.2 we present a simple problem-instance where it is known

that agent a has the key and the goal is for a to know the coin position. Before

proceeding with the description of the E-PDDL syntax we need to introduce the

meaning of the operator “[i]” where i ∈ AG. This operator captures the modal

operator Bi. For example, in Line 10 of Listing 6.1, the formula [?i](has_key ?i)

reads “agent i knows has_key_i” where i ∈ AG and the fluent has_key_i encodes

the fact that i has the key. When the operator is of the form “[α]” where α ⊆ AG

and |α| ≥ 2 then it captures the idea of common belief.

6. “Fast and Slow” Epistemic Planning 161

Problem Domain

First of all, let us note that in Listings 6.1 the actions signal and distract are

omitted to avoid clutter. In fact, these actions are world-altering and, therefore,

share a similar structure with the action open.

Following the PDDL syntax Fox and Long [2003], we start the problem-domain

definition by introducing the name and the requirements of the problem (Lines 1

and 2 of Listings 6.1, respectively). We included a new requirement called :mep

to identify the need for E-PDDL. Lines 4-5 introduce the predicates following the

PDDL standard. A small variation is the object-type agent that does not need to

be defined and it is used to define variables that capture the acting agents.

From Line 7 to Line 14 the action open is introduced. The action’s definition

starts with its name (Line 7) and its type (Line 8). The concept of action type

is inherited from mAρ and, for now, is restricted to be one among ontic, sensing,

or announcement since these are the accepted variations of actions in the MEP

community. Alternatively, if the user is using EFP 2.1 and defined some custom

event model, their ids could be used. Next, in Line 9 and Line 10, respectively, the

action’s parameters and preconditions are defined. The parameters have the same

role that they have in PDDL, that is they are used to associate the variables of

the action’s definition with an object type. Similarly, also the field preconditions—

identified by any belief formula—follow the standard PDDL meaning. After the

preconditions, the action specifies the effects. Finally, the last field of the action

open is about the observers. This field is used to indicate which agents are fully

observant, i.e., knows about the execution and the effects of the action. Knowing

which agent is observant is useful to derive how the beliefs of the agents are updated

after the action is been executed. To better characterize the set of observant agents

we introduced the operator diff that allows to “isolate” the executor of the action

(since the executor needs to be observant and should not depend on other factors).

For example, the condition in Lines 12-13 reads as: “the agent i, i.e., the executor, is

fully observant” and “for every agent j ̸= i if j is looking then j is fully observant”.

The same schema is used to define partial observers, the ones that are aware of

162 6.3. A Fast and Slow Epistemic Architecture

the action execution but do not know the results of such action, with the field

p_observers; an example of partial observability is at Lines 22-23.

1 (define (domain co in inthebox)
2 (:requirements : s t r ips :negative−preconditions :mep)
3
4 (:predicates (opened) (t a i l)
5 (has_key ? i − agent) (l ook ing ? i − agent)))
6
7 (:action open
8 :act_type o n t i c
9 :parameters (? i − agent)

10 :precondition ([? i] (has_key ? i))
11 : e f f e c t (opened)
12 :observers (and (? i) (f o r a l l (d i f f (? j − agent) (? i))
13 (when (l ook ing ? j) (? j))))
14)
15
16 (:action peek
17 :act_type s e n s i n g
18 :parameters (? i − agent)
19 :precondition (and ([? i] (opened)) ([? i] (l ook ing ? i)))
20 : e f f e c t (t a i l)
21 :observers (? i)
22 :p_observers (f o r a l l (d i f f (? j − agent) (? i))
23 (when (l ook ing ? j) (? j)))
24)
25
26 (:action announce
27 :act_type announcement
28 :parameters (? i − agent)
29 :precondition ([? i] (t a i l))
30 : e f f e c t (t a i l)
31 :observers (and (? i) (f o r a l l (d i f f (? j − agent) (? i))
32 (when (l ook ing ? j) (? j))))
33)
34)

Listing 6.1: E-PDDL Coin in the Box problem-domain.

The introduced fields are tailored for implicit belief update, namely a transition

function that automatically updates the e-states without having to know the

list of belief formulae that have been verified or negated. This is the case of

mAρ, which derives how to structurally update the e-state knowing action type,

observability relations, and which properties of the world have been modified.

Later in this section, we will also explain how, with the presented syntax, it is

possible to generate a valid input also for those planners that need the effects

of the action to be completely explicit.

6. “Fast and Slow” Epistemic Planning 163

Problem Instance

In Listings 6.2 we present an example of an E-PDDL problem-instance. In Line

1 and in Line 2 the problem-instance name (i.e., toyinstance) and the related

problem-domain name are defined, respectively.

Next, in Line 3, the object type agent values are defined. In this particular

instance, we defined three agents a, b and c as in Planning Domain 2.1.

Following, in Line 4, the depth is specified. The concept of depth of a belief

formula is used to identify the number of nested epistemic operators. For example,

given two agents i and j the belief formula Bi(φ) has depth 1 while Bi(Ci,j(φ)) has

depth 2. This field is introduced to accommodate the need for certain planners, e.g.,

RP-MEP, to limit the depth of the belief formulae. RP-MEP relies on grounding

the formulae into classical planning “facts” that without bound on these formulae

could be infinite. On the other hand, the limit on depth is ignored by the planners,

e.g., EFP, that reason directly on epistemic states.

Lines 5-12 present the belief formulae that describe the initial state. The

formulae are considered to be in conjunction with each other. The initial conditions

only require to specify when a fluent is true and consider false whichever fluent

is not specified (Line 5). Moreover, the initial conditions are also used to specify

what is known in the initial state (Line 6-12). While the belief formulae in this

field can be of any type, let us remark that Son et al. [2014] demonstrated that

to create a finite number of epistemic states from a set of formulae, this set must

respect a finitary S5 logic and therefore the beliefs must be expressed in terms

of common belief. This means that if the initial conditions do not comply with

a finitary S5 logic the planners that construct the initial epistemic state from

the given specification may not work.

Finally, in Line 13 the conjunction of belief formulae that represent the goals is

defined.

164 6.3. A Fast and Slow Epistemic Architecture

1 (define (problem t oy in s tance)
2 (:domain co in inthebox)
3 (:agent a b c)
4 (:depth 2)
5 (: i n i t (t a i l s) (has_key a) (l ook ing a)
6 ([a b c] (has_key a))
7 ([a b c] (not (has_key b)))
8 ([a b c] (not (has_key c))))
9 ([a b c] (not (opened)))

10 ([a b c] (l ook ing a))
11 ([a b c] (not (l ook ing b)))
12 ([a b c] (not (l ook ing c))))
13 (:goal ([a] (t a i l s)))
14)

Listing 6.2: E-PDDL Coin in the Box problem-instance.

From Implicit to Explicit Belief Update

Since we tailored E-PDDL syntax to represent actions with implicit belief update

we need to explain how E-PDDL itself is a suitable language also for those planners,

e.g., RP-MEP, that need the belief update to be explicit. That is, we need a

standard way of deriving the explicit agents’ belief update from an E-PDDL

action description. While deriving explicit belief update is not a method that

is embedded in the language itself in what follows we propose the strategy that

we adopted in our implemented parser.

The strategy that we adopted in our parser is based on the transition function

by Baral et al. [2015] where the idea of agents’ observability is used to derive

consistent agents’ beliefs about the actions’ effects and/or execution. In what follows

we present a belief derivation schema that, starting from the agents’ observability,

generates the explicit belief update related to a single action. These updates

generate all the belief-chains of finite length ℓ where ℓ ∈ {0, . . . , d} and d is the

value assigned to the field :depth in the problem-instance (in Listings 6.2 d = 2).

Namely, we will have all the following chains:

• a fully observant knows the action’s effect (ℓ = 1);

• a fully observant knows that another fully observant knows the action’s effect

(ℓ = 2);

6. “Fast and Slow” Epistemic Planning 165

• a fully observant knows the chains of length 2 (ℓ = 3);

• and so on until we have that ℓ = d.

Moreover, when partially observant agents are defined we also need to take into

consideration their perspective on the belief update. To do that we will need to

automatically generate the following belief-chains (still limited by the given depth):

• a partially observant knows that any chain of fully observant agents knows

the action’s effect (ℓ = 2); and

• any chain, with ℓ ≤ d − 2, of fully/partially observant knows the chain of

beliefs presented in the previous point.

To better integrate the explicit belief update, we decided to incorporate E-PDDL

with an extra, non-mandatory field for the actions’ specification. This field, identified

by :exp_effect can be used to identify the explicit belief update of the action by

using an arbitrary belief formula. Let us note that when this field is defined it will

completely override the automatically derived belief update for the planners that

make use of explicit belief update, e.g., RP-MEP2. On the other hand, planners that

make use of a full-fledged epistemic transition function, e.g., EFP, will ignore

the :exp_effect field.

6.3.2 The Overall Architecture

Thanks to E-PDDL we are now able to define MEP problems in a standardized

way. Next, we need to take the given input, in E-PDDL, and return a solution to it

using the MC module formalized above. This implementation3 introduces an early

implementation of a System-1 strategy to solve epistemic problems and exploits

already existing planners as System-2 solvers. In particular, the former makes

heavy use of already found plans, returning as a solution the plan that verifies the
2We envisioned this functionality as a way of explicitly providing all the needed effects of the

actions. Nonetheless, in the particular case of RP-MEP, the “experienced” user could just define
the base effects of the actions that would be later compiled by RP-MEP into ancillary effects.

3Available at https://github.com/FrancescoFabiano/MetacognitiveEpistemicPlanning.

https://github.com/FrancescoFabiano/MetacognitiveEpistemicPlanning

166 6.3. A Fast and Slow Epistemic Architecture

major number of sub-goals in the domain. This is still a rudimentary approach

and will certainly be improved over future iterations, but still allows to experiment

with the MC structure. The System-2 planners, used as black boxes, are instead

the planners RP-MEP [Muise et al., 2015]4, and EFP 2.1.

Let us now present a high-level description of the architecture.

• Initially, the tool receives three input files: a domain description in E-PDDL, a

problem instance in E-PDDL, and a context file. The last file contains meta-data,

e.g., resources availability, accuracy required, that emulate the limits represented

by the environment.

• Then the architecture, emulating the MC-1 module, checks whether there is

enough experience to retrieve a plan, from past instances, that solves the problem

respecting the given constraints. If such a plan exists, it is returned as a solution.

• Otherwise, a simplified version of MC-2 is engaged. This part of the architecture

analyzes the problem and, after checking the maximum depth and the presence

of dynamic common belief, selects the best option between Pla-1 (RP-MEP)

and Pla-2 (EFP 2.1).

• After selecting the best approach for the given problem, the tool evaluates the

problem difficulty and derives the expected resource consumption (with respect

to the selected planner).

• Then, the architecture checks if the solving process is within the constraints. If

it is not, the solution from the System-1 solver (if exists) is adopted. On the

other hand, if the estimated time is within the given constraints, the problem

is: (i) translated in the language “understood” by the selected System-2 solver

thanks to our E-PDDL parser; (ii) solved by either Pla-1 or Pla-2; and (iii) then

validated and saved alongside its solution to increase the system’s experience.

4Available at https://github.com/QuMuLab/pdkb-planning.

https://github.com/QuMuLab/pdkb-planning

[...] ἔοικα γοῦν τούτου γε σμικρῷ τινι αὐτῷ τούτῳ

σοφώτερος εἶναι, ὅτι ἃ μὴ οἶδα οὐδὲ οἴομαι εἰδέναι.

I neither know nor think I know. (Paraphrase)

— Socrates
in Plato, Apology [21d]

7
Conclusion

In this dissertation, we presented our research efforts in formalizing and developing

a general and flexible Multi-agent Epistemic Planning environment. The final

goal of this thesis is to deliver an instrument that can be exploited as a basis

for future research on the MEP setting.

We started by illustrating a new epistemic state representation that, alongside

a new and optimized transition function, allowed us to design a comprehensive

epistemic solver with state-of-the-art performances. Doing so, we presented mAρ, an

action language for MEP based on possibilities—a non-well-founded data structure.

mAρ imitates its predecessor mA∗ in defining three types of actions: world-altering,

sensing, and announcements. While these action types allow to describe a vast

range of domains, we decided to enrich mAρ—and consequently, our solver based

on it—in order to capture an even wider spectrum of real-world scenarios. We,

therefore, decided to start by defining one of the fundamental concepts that are

linked to information flows: the idea of trust. This permitted to define how agents

treat incoming information considering the source. We then envisioned a way to

expand our epistemic language even further. We associated each agent to a specific

attitude that varies depending on the world configuration and the information source.

Attitudes enrich the domain description by defining how the agents handle the

various information exchanges. After implementing and validating all the previous

167

168 7. Conclusion

expansions, we formalized a general framework that allows the user to define custom

action types. Thanks to this final step, it is possible to tailor action types without

limitations, making our planner a tool capable of handling all the various epistemic

nuances. Finally, we implemented an initial version of a two phases architecture

that, inspired by a famous cognitive theory, exploits diverse techniques to optimize

the resolution of MEP problems. Once again, we hope that this architecture can be

useful to other researchers who may also complement it with their tools.

While the functionalities described above have been implemented, we believe

that there are still a lot of different research directions that need to be analyzed in

the MEP setting. For example, we believe that it is paramount to study distributed

versions of epistemic solvers. This would allow for a better characterization of

multi-agent scenarios allowing, for example, to better capture secrecy and to make

the planning process more realistic. Another important factor that we did not

explore during our research is the concept of non-deterministic actions. While these

could be “easily” addressed at the search-space level, we believe that it would be

much more appropriate to address them within the single e-state update. Several

other improvements in the formalization could be devised, and we hope that our

framework would help in doing so in future studies. Finally, considering the planner,

we feel like there is still much work to be done. In fact, an important issue for

MEP solvers is their poor scalability. In this dissertation, we put most of our

efforts into investigating the foundation of the problem rather than optimizing

what already existed. Nonetheless, having tools that, most of the time, have not

acceptable performances limit the proliferation of the solvers themselves. That is

why we believe a very important future work is to focus on the optimization of EFP,

making it suitable for real-world tasks. Such optimizations could derive from several

directions: implementation of heuristics (formalized in this thesis), use of parallelism,

adoption of symbolic e-state representations, and so on. Furthermore, we believe

that devising a simple user interface for the aforementioned tools, especially EFP,

will make them more approachable.

Appendices

169

Cred’io ch’ei credette ch’io credesse [...]

I believe he believed that I believed that [...]

— Dante Alighieri
Inferno, XIII, 25-26

A
Propositions Proofs

Contents
A.1 Preliminary Definitions 171
A.2 Proofs of Propositions 2.3 to 2.5 174
A.3 Proofs of Propositions 3.1 and 3.2 179

A.3.1 Updated States Size Finiteness 179
A.3.2 Proofs . 180

A.4 Proof of Proposition 4.1 186
A.5 Proofs of Propositions 5.1 to 5.3 192

A.5.1 Abbreviations . 192
A.5.2 PLATO Entailment Correctness 192
A.5.3 PLATO Initial State Construction Correctness 194
A.5.4 PLATO Transition Function Correctness 196

A.1 Preliminary Definitions

Before starting with the proofs we need to introduce some terminology that will

help us to avoid unnecessary clutter. In particular, let a Domain D, a p ∈ S where

S is the set of all the possibilities reachable from D(φini) with a finite sequence

of action instances, and the set of agents AG ⊆ D(AG) be given. The operator

Bp
AG captures all the reachable possibilities for AG given a starting possibility p.

Let us describe now how this operator can be used to represent the notions of

(i) agents’ belief; (ii) common belief; and (iii) nested beliefs.

171

172 A.1. Preliminary Definitions

Agents Beliefs Representation To link the operator introduced above with

the concept of belief let us start with the case where the set of agents AG contains

only one element i, i.e., AG = {i}. We, therefore, use Bp
i to identify the set of

all the possibilities that i, starting from the possibility p, cannot distinguish. The

construction of the set identified by Bp
i is procedural and it is done by applying the

operator (Bp
i)k, with k ∈ N, until a fixed point is found. The operator (Bp

i)k

is defined as follows:

(Bp
i)k =

⎧⎨⎩p(i) if k = 0
{q | (∃u ∈ (Bp

i)k−1)(q ∈ u(i))} if k ≥ 1

Finally, we can define Bp
i = ⋃︁

k≥1
(Bp

i)k. It is easy to see that this is equivalent to

the set of possibilities reached by the operator Bi starting from p and, therefore,

that it represents the beliefs of i in p.

Let us note that the fixed point of the succession (BS
AG)k is reached in a finite

number of iterations. This is because:

• (BS
AG)k is monotonic; namely (BS

AG)k ⊆ (BS
AG)k+1 with k ∈ N (Lemma A.1);

and

• the set S of all the possibilities reached by applying a finite sequence of

action instances ∆ to a given possibility p has a finite number of elements

(Lemma A.2).

Common Belief Representation Now, similarly to the single-agent case, we can

define the set Bp
AG . This represents the common belief of AG (CAG) starting from p.

As before we introduce the operator (Bp
AG)k of which the fixed point will result in Bp

AG .

(Bp
AG)k =

⎧⎪⎨⎪⎩
⋃︁

i∈AG
p(i) if k = 0

{q | (∃u ∈ (Bp
AG)k−1)(q ∈ ⋃︁

i∈AG
u(i))} if k ≥ 1

A. Propositions Proofs 173

Nested Belief Representation We can also express the concept of nested belief

in a more compact way. Let two sets of agents AG1 ⊆ D(AG),AG2 ⊆ D(AG) be

given; the set of possibilities reachable by applying CAG1CAG2 starting from p is:

Bp
AG1,AG2

= {q | (∃r ∈ Bp
AG1

)(q ∈ Br
AG2

)}

Let us note that, when AG1 or AG2 contains only one agent i, Ci, and Bi are equal.

Lemma 1.1: Operator BS
AG monotony

The sequence (BS
AG) is monotonic; meaning that, for every k ∈ N, (BS

AG)k ⊆
(BS

AG)k+1.

Proof of Lemma A.1 Without losing generality let a possibility p and
an agent i be given. To prove the monotonicity of (Bp

i) we start by recalling
that:

(Bp
i)k ={q | (∃u ∈ (Bp

i)k−1)(q ∈ u(i))}.

By construction, each possibility respects the KD45 logic (Table 1.1) and,
therefore, some structural constraints. In particular, to comply with axioms
4 and 5, if a possibility q ∈ p(i) then q ∈ q(i). In terms of our sequence, this
translates into if a possibility q ∈ (Bp

i)k−1 then q ∈ (Bp
i)k.

It is easy to see that this property ensures that the agent’s reachability
function respect introspection. That is; when an agent reaches q she/he has to
“know” that her/him-self considers q possible. Thanks to this property we can
now infer that each iteration of the sequence (Bp

i)k contains at least (Bp
i)k−1

and, therefore, that the sequence (BS
AG) is monotonic.

Lemma 1.2: States Size Finiteness

Given a finite action instances sequence ∆—namely a plan—and a starting
point p with a finite number of possible worlds, i.e., | ⋃︁

i∈D(AG)
p(i)| = n, the set

S of all the possibilities generated by applying ∆ to p has a finite number of
elements.

174 A.2. Proofs of Propositions 2.3 to 2.5

Proof of Lemma A.2 Following the definition of the transition function
of mAρ (Definition 2.12) we can determine an upper bound for the number
of new possibilities generated after the application of an action instance and,
therefore, of an action instances sequence. In particular, from a given possibility
p such that |Bp

AG| = n (where AG is the set of all the agents) the cardinality of
the set Bp′

AG will be, at most, equal to 2n. That is because:

• when an ontic action is executed each possibility ∈ |Bp
AG| can be either

updated—if reached by a fully observant agent—or kept unchanged—if
reached by an oblivious agent. This means that an upper bound to the
size of Bp′

AG in case of an ontic action execution is 2n where only the
updated possibilities (n) are new elements of S.

• The case with sensing and announcement actions is similar.

This identifies 2n as the upper bound for the growth of a state size and for
the generation of new possibilities after an action execution. Therefore, given
the size n of the initial state and the length of the action sequence l we can
conclude that |S| ≤ (n× 2l) that is indeed finite.

A.2 Proofs of Propositions 2.3 to 2.5

Let us prove the properties illustrated in Propositions 2.3 to 2.5.

As before, in the following proofs, we will use p′ instead of Φ(a, p) to avoid

unnecessary clutter when possible.

Proof of Proposition 2.3 Let us prove each item of Proposition 2.3
separately:

(1) Assuming that action a is executable in u we have that u |= ψ. This means
that:

• If u |= Bx(ψ) we have that ∀p ∈ Bu
x p |= ψ; this is because Bu

x represents
the set of possibilities reachable by Bx starting from u.

• In particular we are interested in the set of possibilities reachable by
Bx starting from u′, i.e., Bu′

x = {p′ | (∃p ∈ Bu
x)(p′ = Φ(p, a))}.

• Following Definition 2.12, we also know that—being x ∈ Fa—if ℓ = fa

then e(a, u) = {f} and therefore p′(f) = 1 ∀p′ ∈ Bu′
x .

• From this last step we can conclude that every element of Bu′
i entails f.

A. Propositions Proofs 175

• As said previously Bu′
x represents Bx starting from u′.

• It is easy to see that if every element in Bu′
x entails f, then u′ |= Bx(f).

(2) As in the previous item, we assume action a to be executable in u meaning
that:

• If u |= By(φ) we have that every p ∈ Bu
y entails φ.

• From Definition 2.12 when y ∈ Oa for each possibility p ∈ Bu
y p(y) = p′(y)

it is easy to see that Bu
y ≡ Bu′

y .

• Given that the two sets of possibilities are the same, it means that the
reachability functions that they represent are the same.

• Being the two functions the same it means that ∀φ ∈ D u |= By(φ) iff
u′ |= By(φ).

(3) Again we assume the executability of the action a and we consider x ∈ Fa

and y ∈ Oa:

• Being y ∈ Oa, from Definition 2.12, we know that p(y) = p′(y) such
that p ∈ Bu

x and p′ is its updated version ∈ Bu′
x .

• This means that for every element in Bu
x we have an updated version

that has the same reachability function for the agent y.

• Then it is easy to see that Bu
x,y ≡ Bu′

x,y and therefore that these two sets
contain the same possibilities.

• As already said in Item (2) when two sets of possibilities are the same
they entail the same formulae.

• Therefore we can conclude that if u |= Bx(By(φ)) then u′ |= Bx(By(φ))

aThe case where a causes ¬f is similar and, therefore, is omitted here.

176 A.2. Proofs of Propositions 2.3 to 2.5

Proof of Proposition 2.4 Once again, let us prove each item separately:

(1) In the following we prove Item (1). Being the proof for Item (2) similar
we will omit it for the sake of readability.

• First of all we identify the set of all the possibilities reached by the
fully observant agents in u as Bu

Fa
and we remind that, as shown in

Paragraph Common Belief Representation, this set corresponds to
the possibilities reached by CFa ;

• We recall that, by hypothesis, u |= f and therefore e(a, u) = {f}.

• We then calculate Bu′
Fa

that, following Definition 2.12, contains only
possibilities p′ such that p′(f) = 1.

• This means that ∀p′ ∈ Bu′
Fa

we have that p′ |= f.

• As shown in Item (1) of Proposition 2.3, given that this set contains
only the possibilities that entail f we can derive that Bu′

Fa
|= f.

• Finally, as the set CFa ≡ Bu′
Fa

, we have that CFa |= f.

(2) The proof of this item is similar to the one presented in Item (1) and it is
omitted for the sake of readability.

(3) Once again we identify the set of the possibilities reachable by partial
observant agents with Bu

Pa
. We also remind that this set is equal to CPa

in u.

• Now to calculate Bu′
Pa

, following Definition 2.12, we apply “Φ(a, u)” to
every element of Bu

Pa
.

• To simplify the proof let us redefine the partially observant agents’
belief update for epistemic actions in the following way:

u′(i) =

⎧⎪⎪⎨⎪⎪⎩
⋃︁

w∈u(i)
Φ(a,w) if i ∈ AG, i ∈ Pa and e(a, u) = e(a,w)⋃︁

w∈u(i)
Φ(a,w) if i ∈ AG, i ∈ Pa and e(a, u) ̸= e(a,w)

Where i ∈ Pa

A. Propositions Proofs 177

• It is easy to identify two disjoint subsets B1
Pa

and B2
Pa

of Bu′
Pa

that
contains only possibility such that:

– B1
Pa
|= e(a, u);

– B2
Pa
̸|= e(a, u);

– (B1
Pa
∪ B2

Pa
) ≡ Bu′

Pa
; and

– (B1
Pa
∩ B2

Pa
) ≡ ∅.

• From these two sets we can now construct the sets B1
Pa,Fa

and B2
Pa,Fa

that are simply the set of possibilities reachable from the fully observant
agents starting from B1

Pa
and B2

Pa
, respectively.

• Given that the set B1
Pa,Fa

resulted from the application of the transition
function from the point of view of fully observant agents, we know from
Item (1) of Proposition 2.3 that for ∀p ∈ B1

Pa,Fa
, p |= f.

• This implies that B1
Pa,Fa

reaches only possibilities where the interpre-
tation of f is true and similarly in B2

Pa,Fa
only possibilities where the

interpretation of f is false.

• This means that B1
Pa,Fa

|= f and B2
Pa,Fa

|= ¬f.

• It is easy to see then that B1
Pa
|= CFaf being B1

Pa,Fa
= {p | p ∈⋃︁

q∈B1
Pa

q(Fa)} (and similarly B2
Pa
|= CFa¬f).

• Finally being Bu′
Pa

= B1
Pa
∪ B2

Pa
we can conclude that Bu′

Pa
|= CFaf ∨

CFa¬fa and therefore u′ |= CPa(CFaf ∨CFa¬f).

(4) To prove this item we will make use of the properties proved in previous
Items.

• As said in the Paragraph Nested Belief Representation, we know
that Bu

Fa,Pa
corresponds with the set of possibilities identified by CFaCPa

and it is also equal to {p | (∃q ∈ Bu
Pa

)(p ∈ ⋃︁
i∈Fa

q(i))}.

• Now to calculate Bu′
Fa

we apply Definition 2.12 to every element of Bu
Fa

.
This means that Bu′

Fa
= {p′ | (∃p ∈ Bu

Fa
)(p′ = Φ(a, p))}.

• We then want to calculate the set {p′ | (∃q′ ∈ Bu′
Fa

)(p′ ∈ ⋃︁
i∈Pa

q′(i))}.

• To calculate the “point of view” of the partially observants with respect
to the fully observants we apply Definition 2.12 to all the elements of

178 A.2. Proofs of Propositions 2.3 to 2.5

{p | (∃q′ ∈ Bu′
Fa

)(p ∈ Bq
Pa

)}.

• It is easy to see that the resulting set is {p′ | (∃q′ ∈ Bu′
Fa

)(p′ ∈⋃︁
i∈Pa

q′(i))} ≡ Bu′
Fa,Pa

.

• We showed, in the previous item, that the set Bu′
Pa

entails CFaf∨CFa¬f.

• This means that Bu′
Fa,Pa

|= (CPa((CFaf ∨ CFa¬f)) and therefore,
following what said in Paragraph Nested Belief Representation,
u′ |= CFa(CPa(CFaf ∨CFa¬f)).

(5)–(6) The proofs for the fifth and sixth items are similar to the ones
presented in Item (2) and Item (3) of Proposition 2.3 respectively and is
therefore omitted.

aThe two sets are completely disjoint as one only contains possibilities that entail f
while the other only possibilities that do not. This means that that does not exist any
fully-observant-edge between possibilities that belongs in two different sets.

Proof of Proposition 2.5 The proof of this proposition is very similar
to the proof of Proposition 2.4 and it is, therefore, omitted for the sake of the
presentation.

A. Propositions Proofs 179

A.3 Proofs of Propositions 3.1 and 3.2

Let us provide the formal proof that the properties presented in Propositions 3.1

and 3.2. Most of the properties are shared between un-trustworthy announcement

and mis-trustworthy announcement; and their proof of correctness is the same

independently of the announcement type we are considering. For the sake of

readability, we will only report the proofs of Items (1) to (7) considering the un-

trustworthy announcement, while we explore the remaining properties considering

the specific action type.

In the following proofs, without loss of generality, we will consider that u |= ϕ.

The case when u |= ¬ϕ is a straightforward adaptation and it is, therefore, omitted.

Moreover, let us consider the case when the executability conditions of the action

a are met. In the case when these conditions are not satisfied, the action update

is not executed and therefore does not need to be proved.

A.3.1 Updated States Size Finiteness

Before providing the formal proof let us slightly modify the proof of Lemma A.2

so that it considers also the new actions. In particular, in what follows we prove

the e-state finiteness considering also the un-trustworthy announcement and the

mis-trustworthy announcement.

Proof of Lemma A.2 (updated) Following the definition of the transition
function of mAρ (Definition 2.12) enriched with the actions un-trustworthy
announcement and mis-trustworthy announcement, we can determine an upper
bound to the number of new possibilities generated after the application of an
action instance and, furthermore, of an action instances sequence. In particular,
from a given possibility p such that |Bp

AG| = n (where AG is the set of all the
agents) the cardinality of the set Bp′

AG will be, at most, equal to 3n. That is
because:

• when an ontic action is executed each possibility ∈ |Bp
AG| can be either

updated—if reached by a fully observant agent—or kept unchanged—if
reached by an oblivious agent. This means that an upper bound to the
size of Bp′

AG in case of an ontic action execution is 2n where only the
updated possibilities (n) are new elements of S.

180 A.3. Proofs of Propositions 3.1 and 3.2

• The case with sensing and un-trustworthy announcement actions is similar
to the ontic action one.

• Finally, mis-trustworthy announcement generates up to 2n new possi-
bilities. Each possibility ∈ |Bp

AG| can be updated with the announced
value—if reached by a trusty fully observant agent—or updated with
the negation of the announced fluent—if reached by an untrusty fully
observant agent. Both of the copies can then be added to the unchanged
possibilities—reached by an oblivious agent—meaning that the size of
Bp′

AG in case of an mis-trustworthy announcement action execution is 3n
where only the updated possibilities (2n) are new elements of S.

This identifies 3n as the upper bound for the growth of a state size and for
the generation of new possibilities after an action execution. Therefore, given
the size n of the initial state and the length of the action sequence l we can
conclude that |S| ≤ (n× 3l) that is indeed finite.

A.3.2 Proofs

Preserving all the other concepts introduced in Appendix A.1, we are ready to

prove Proposition 3.1.

Proof of Proposition 3.1 Let us prove each item separately:

(1) In the following we prove the first property of Proposition 3.1.

• First of all we identify the set of all the possibilities reached by the
trusty fully observant agents in u as Bu

Fa
and we recall that, as shown in

Appendix A.1, this set corresponds to the possibilities reached by CFa .

• We then calculate Bu′
Fa

that, following Definition 3.2, contains only
possibilities p′ such that e(a, p′) = 0 (False).

• This means that ∀p′ ∈ Bu′
Fa

we have that p′ |= ϕ.

• Given that this set contains only possibilities that entail ϕ we can derive
that Bu′

Fa
|= ϕ.

• Finally, as the set CFa ≡ Bu′
Fa

, we have that CFa |= ϕ.

(2) The set of the possibilities reachable by untrusty fully observant agents is
Bu

Ua
.

A. Propositions Proofs 181

• In order to compute Bu′
Ua

, following Definition 3.2, we apply Ψ(a, u) to
every element of Bu

Ua
.

• This means that the set of beliefs of the trusty fully observant, from the
point of view of the untrusty ones, is represented by the set Bu′

Ua,Fa
=

{p′ | p ∈ Bu′
Ua
∧ e(a, p′) = 0}.

• We then have that ∀p′ ∈ Bu′
Ua,Fa

p′ |= ϕ and therefore that u′ |=
CUa(CFaϕ).

(3) Let us identify the set of the possibilities reachable by partial observant
agents with Bu

Pa
. We also recall that this set is equal to CPa in u.

• Now to calculate Bu′
Pa

, following Definition 3.2, we apply
Υ(a,w) ∪Ψ(a, u) to every element of Bu

Pa
.

• It is easy to identify two disjoint subsets BΥ
Pa

and BΨ
Pa

of Bu′
Pa

that
contain only possibilities such that:

– BΨ
Pa
|= u(a, u);

– BΥ
Pa
̸|= u(a, u);

– (BΨ
Pa
∪ BΥ

Pa
) ≡ Bu′

Pa
; and

– (BΨ
Pa
∩ BΥ

Pa
) ≡ ∅.

• From these two sets we can now construct the sets BΨ
Pa,Fa

and BΥ
Pa,Fa

that are simply the set of possibilities reachable from the fully observant
agents starting from BΨ

Pa
and BΥ

Pa
, respectively.

• Given that the set BΨ
Pa,Fa

resulted from the application of the transition
function from the point of view of trusty fully observant agents, we
know from Item (1) that for ∀p ∈ BΨ

Pa,Fa
, p |= ϕ.

• This implies that BΨ
Pa,Fa

reaches only possibilities where the interpre-
tation of ϕ is true and similarly in BΥ

Pa,Fa
only possibilities where the

interpretation of ϕ is false.

• This means that BΨ
Pa,Fa

|= ϕ and BΥ
Pa,Fa

|= ¬ϕ.

• We can then derive that BΨ
Pa
|= CFaϕ being BΨ

Pa,Fa
= {p | p ∈⋃︁

q∈BΨ
Pa

q(Fa)} (and similarly BΥ
Pa
|= CFa¬ϕ).

• Finally, being Bu′
Pa

= BΨ
Pa
∪ BΥ

Pa
we can conclude that Bu′

Pa
|= CFaϕ ∨

CFa¬ϕa and therefore u′ |= CPa(CFaϕ ∨CFa¬ϕ).

182 A.3. Proofs of Propositions 3.1 and 3.2

(4) To prove this item we will make use of the properties proved in previous
Items.

• As said in Appendix A.1, we know that Bu
Fa∪Ua,Pa

corresponds with
the set of possibilities identified by CFa∪UaCPa and it is also equal to
{p | (∃q ∈ Bu

Pa
)(p ∈ ⋃︁

i∈Fa∪Ua

q(i))}.

• Now to calculate Bu′
Fa∪Ua

we apply Definition 3.2 to every element of
Bu

Fa∪Ua
. This means that Bu′

Fa∪Ua
= {p′ | (∃p ∈ Bu

Fa∪Ua
)(p′ = Ψ(a, p))}.

• We then want to calculate the set {p′ | (∃q′ ∈ Bu′
Fa∪Ua

)(p′ ∈ ⋃︁
i∈Pa

q′(i))}.

• To calculate the “point of view” of the partially observants with respect
to the fully observants we apply Definition 3.2 to all the elements of
{p | (∃q′ ∈ Bu′

Fa∪Ua
)(p ∈ Bq

Pa
)}.

• We can then derive that the resulting set is {p′ | (∃q′ ∈ Bu′
Fa∪Ua

)(p′ ∈⋃︁
i∈Pa

q′(i))} ≡ Bu′
Fa∪Ua,Pa

.

• We showed in the previous item that given the set of possibilities resulted
by applying the transition function entails CFa∪Uaϕ ∨CFa∪Ua¬ϕ.

• This means that Bu′
Fa∪Ua,Pa

|= (CFa∪Uaϕ ∨ CFa∪Ua¬ϕ) and therefore,
following what said in Appendix A.1, u′ |= CFa∪Ua(CPa(CFa∪Uaϕ ∨
CFa∪Ua¬ϕ)).

(5) Let us consider y ∈ Oa.

• If u |= By(φ) we have that every p ∈ Bu
y entails φ.

• Given that, from Definition 3.2, when y ∈ Oa for each possibility
p ∈ Bu

y p(y) = p′(y) it is easy to see that Bu
y ≡ Bu′

y .

• Given that the two sets of possibilities are the same it means that the
reachability functions that they represent are the same.

• Being the two functions the same it means that ∀φ ∈ D u |=
By(φ) iff u′ |= By(φ).

(6) Let us consider x ∈ Fa ∪Ua ∪Pa and y ∈ Oa.

A. Propositions Proofs 183

• Being y ∈ Oa, from Definition 3.2, we know that p(y) = p′(y) such that
p ∈ Bu

x and p′ is its updated version ∈ Bu′
x .

• This means that for every element in Bu
x we have an updated version

that has the same reachability function for the agent y.

• Then we can derive that Bu
x,y ≡ Bu′

x,y and therefore that these two sets
contain the same possibilities.

• As already said in Item (5) when two sets of possibilities are the same
they entail the same formulae.

• We can conclude that if u |= Bx(By(φ)) then u′ |= Bx(By(φ)).

(7) Let us consider y ∈ Ua. Let us assume, without losing generality, that u
|= By(ϕ). The cases where u |= By(¬ϕ) or u |= (¬By(ϕ) ∧ ¬By(¬ϕ)) are
similar and therefore omitted.

• Being y ∈ Ua we know that the updated version of her/his reachable
possibility is Bu′

y = {p′ | p ∈ Bu
y ∧ p′ = Ψ(a, p)}.

• Following Definition 3.2 we know that each possibility in Bu′
y has the

same fluent set of its previous version.

• Moreover, an untrusty agent preserves all the edges. This means that
if an agent reached q from q in u she/he will reach q′ from q′ in u′.

• From the last statement, and given that the updated version of each
possibility maintains the same fluent set we can conclude that, if
u |= By(ϕ) iff u |= By(ϕ) (similarly if u |= By(¬ϕ) and if (¬By(ϕ) ∧
¬By(¬ϕ))).

aThe two sets are completely disjoint as one only contains possibilities that entail ϕ
while the other only possibilities that do not. This means that that does not exist any
fully-observant-edge between possibilities that belongs in two different sets.

Finally, we can prove the properties introduced in Proposition 3.2.

Proof of Proposition 3.2 Let us prove each property separately.

(8) In the following we prove the first property of Proposition 3.2.

• First of all we identify the set of all the possibilities reached by the

184 A.3. Proofs of Propositions 3.1 and 3.2

untrusty fully observant agents in u as Bu
Ua

and we recall that, as shown
in Appendix A.1, this set corresponds to the possibilities reached by
CUa .

• We then calculate Bu′
Ua

that, following Definition 3.3, contains only
possibilities p′ such that e(a, p′) = 1 (True).

• This means that ∀p′ ∈ Bu′
Fa

we have that p′ |= ¬ϕ.

• Given that this set contains only possibilities that entail ϕ we can derive
that Bu′

Ua
|= ¬ϕ.

• Finally, as the set CUa ≡ Bu′
Ua

, we have that CUa |= ¬ϕ.

(9) The set of the possibilities reachable by trusty fully observant agents is
Bu

Fa
.

• Now to calculate Bu′
Fa

, following Definition 3.3, we apply Ψ(a, u) to every
element of Bu

Fa
.

• This means that the set of beliefs of the untrusty fully observant,
from the point of view of the trusty ones, is represented by the set
Bu′

Fa,Ua
= {p′ | p ∈ Bu′

Fa
∧ e(a, p′) = 1}.

• It is then straightforward to see that the ∀p′ ∈ Bu′
Fa,Ua

p′ |= ¬ϕ and
therefore that u′ |= CFa(CUa¬ϕ).

(10) We identify the set of the possibilities reachable by partial observant agents
with Bu

Pa
. We also recall that this set is equal to CPa in u.

• Now to calculate Bu′
Pa

, following Definition 3.3, we apply
Υ(a,w) ∪Ψ(a, u) to every element of Bu

Pa
.

• It is easy to identify two disjoint subsets BΥ
Pa

and BΨ
Pa

of Bu′
Pa

that
contains only possibility such that:

– BΨ
Pa
|= u(a, u);

– BΥ
Pa
̸|= u(a, u);

– (BΨ
Pa
∪ BΥ

Pa
) ≡ Bu′

Pa
; and

– (BΨ
Pa
∩ BΥ

Pa
) ≡ ∅.

• From these two sets we can now construct the sets BΨ
Pa,Ua

and BΥ
Pa,Ua

A. Propositions Proofs 185

that are simply the set of possibilities reachable from the fully observant
agents starting from BΨ

Pa
and BΥ

Pa
respectively.

• Given that the set BΨ
Pa,Ua

resulted from the application of the transition
function from the point of view of untrusty fully observant agents, we
know from Item (8) that for ∀p ∈ BΨ

Pa,Ua
, p |= ¬ϕ.

• This implies that BΨ
Pa,Ua

reaches only possibilities where the interpre-
tation of ϕ is false and similarly in BΥ

Pa,Ua
only possibilities where the

interpretation of ϕ is true.

• This means that BΨ
Pa,Ua

|= ¬ϕ and BΥ
Pa,Ua

|= ϕ.

• We can then derive that BΨ
Pa
|= CUa¬ϕ being BΨ

Pa,Ua
= {p | p ∈⋃︁

q∈BΨ
Pa

q(Ua)} (and similarly BΥ
Pa
|= CUaϕ).

• Finally, being Bu′
Pa

= BΨ
Pa
∪ BΥ

Pa
we can conclude that Bu′

Pa
|= CUaϕ ∨

CUa¬ϕ and therefore u′ |= CPa(CUaϕ ∨CUa¬ϕ).

186 A.4. Proof of Proposition 4.1

A.4 Proof of Proposition 4.1

Following we will present the formal proof that the properties presented in Proposi-

tion 4.1.

Proof of Proposition 4.1 Let us prove each item separately. Let us
assume that a is j announces f. The case when j announces ¬f is similar,
and we will only highlight the differences when it is needed.

(1) In the following we prove Item (1).

• First of all we identify the set of all the possibilities reached by the
fully observant agents in u as Bu

Fa
.

• We then re-apply the reachability function following the beliefs of the
trustful agents. This means that the set of beliefs of the trustful,
from the point of view of the fully observant ones, is represented by the
set Bu

Fa,Ta
= {p | p ∈ Bq

Ta
∧ q ∈ Bu

Fa
}.

• Now to calculate Bu′
Fa,Ta

, following Definition 4.4, we apply χ(f, p, 1)
to every element p of Bu

Fa,Ta
. Let us note that if e(a) = 0, that is if j

announces ¬f, we should apply χ(f, p, 0) instead.

• This means that the set of updated beliefs of trustful agents, from
the point of view of the fully observant ones, is represented by the
set Bu′

Fa,Ta
= {p′ | p′(F) = ((p(F) \ {¬f}) ∪ {f}) ∧ p ∈ Bu

Fa,Ta
}. It is

important to notice that the truth value of the fluent f in the set of
possibilities Bu′

Fa
is not important as the application of χ(f, p, 1) on all

these possibilities forces their updated version to set the truth value of
f = 1 (similarly, for the negated case, the fluent truth value is 0).

• It is then straightforward to see that the set Bu′
Fa,Ta

entails f, as all the
reached possibility have the truth value of f set to 1. Recalling that,
as shown in Appendix A.1, the set Bu

α,β corresponds to the possibilities
reached by Cα(Cβ) where α, β ⊆ D(AG) it is clear that the updated
e-state u′ |= CFa(CTa(f)) (and similarly, in the negated case, u′ |=
CFa(CTa(¬f))).

• Now, to show that u′ |= CFa(CTa(Bj(f))) we need to recall that the
trustful agents consider that the announcer j to be trustful as well.
This means that Bu′

Fa,Ta,{j} is equal to Bu′
Fa,Ta

as the trustful agents
believes that the announcer j used χ(f, p, 1) to update her/his beliefs
(being, from their perspective trustful agent). This means that all
the possibilities in Bu′

Fa,Ta,{j} have the truth value of f set to 1 (or 0 in

A. Propositions Proofs 187

the negated case).

• Following Appendix A.1 we know that Bu′

Fa,Ta,{j} is equal to the
possibilities reached by applying CFa(CTa(Bj)). Given that all these
possibilities have the truth value of f set to 1 it is straightforward to
see that u′ |= CFa(CTa(Bj(f))).

• From the previous items now know that u′ |= CFa(CTa(f)) ∧
CFa(CTa(Bj(f))) and therefore that u′ |= CFa(CTa(f∧Bj(f))) as stated
in Item (1) (while for the negated case we can easily derive that u′ |=
CFa(CTa(¬f ∧Bj(¬f)))).

(2) Let us proceed with Item (2).

• First we identify the set of all the possibilities reached by the fully
observant agents in u as Bu

Fa
.

• We then re-apply the reachability function following the beliefs of
the mistrustful agents. This means that the set of beliefs of the
mistrustful, from the point of view of the fully observant ones, is
represented by the set Bu

Fa,Ma
= {p | p ∈ Bq

Ma
∧ q ∈ Bu

Fa
}.

• Now to calculate Bu′
Fa,Ma

, following Definition 4.4, we apply χ(f, p, 0)
to every element p of Bu

Fa,Ma
. Let us note that if e(a) = 0, that is if j

announces ¬f, we should apply χ(f, p, 1) instead.

• This means that the set of updated beliefs of mistrustful agents, from
the point of view of the fully observant ones, is represented by the
set Bu′

Fa,Ma
= {p′ | p′(F) = ((p(F) \ {f}) ∪ {¬f}) ∧ p ∈ Bu

Fa,Ma
}. It is

important to notice that the truth value of the fluent f in the set of
possibilities Bu′

Fa
is not important as the application of χ(f, p, 0) on all

these possibilities forces their updated version to set the truth value of
f = 0 (similarly, for the negated case, the fluent truth value is 1).

• It is then straightforward to see that the set Bu′
Fa,Ma

entails ¬f, as all
the reached possibility have the truth value of f set to 0. Recalling that,
as shown in Appendix A.1, the set Bu

α,β corresponds to the possibilities
reached by Cα(Cβ) where α, β ⊆ D(AG) it is clear that the updated
e-state u′ |= CFa(CMa(¬f)) (and similarly, in the negated case, u′ |=
CFa(CMa(f))).

• Now, to prove that u′ |= CFa(CMa(Bj(¬f))) we need to recall
that the mistrustful agents consider that the announcer j to be

188 A.4. Proof of Proposition 4.1

mistrustful as well. This means that Bu′

Fa,Ma,{j} is equal to Bu′
Fa,Ma

as
the mistrustful agents believes that the announcer j used χ(f, p, 0)
to update her/his beliefs (being, from their perspective mistrustful
agent). This means that all the possibilities in Bu′

Fa,Ma,{j} have the truth
value of f set to 0 (or 1 in the negated case).

• Following Appendix A.1 we know that Bu′

Fa,Ma,{j} is equal to the
possibilities reached by applying CFa(CMa(Bj)). Given that all these
possibilities have the truth value of f set to 0 it is straightforward to
see that u′ |= CFa(CMa(Bj(¬f))).

• From the previous items now know that u′ |= CFa(CMa(¬f)) ∧
CFa(CMa(Bj(¬f))) and therefore that u′ |= CFa(CMa(¬f ∧Bj(¬f))) as
stated in Item (1) (while for the negated case we can easily derive that
u′ |= CFa(CMa(f ∧Bj(f)))).

(3) To prove Item (3) let us consider i ∈ (Sa ∪ {j}) and that u does entail φ
(where φ ∈ {Bi(ℓ), Bi(¬ℓ), (¬Bi(ℓ) ∧ ¬Bi(¬ℓ))}). The case where u ̸|= φ
is similar and, therefore, omitted.

• Let us start by recalling that the executor agent j consider her/him-self
as stubborn, given that announcing something should not affect her/his
beliefs on what she/he has announced. This means that, to calculate
the updated version of u′, agent j applies the sub-function S as the
stubborn agents do.

• Now, being i ∈ (Sa ∪ {j}), we know from Definition 4.4 that the
updated version of her/his reachable possibilities is represented by the
set Bu′

i = {p′ | p ∈ Bu
i ∧ p′ = S(a, u, ℓ, s), } (The Boolean value s is

either 1, if i ∈ Sa, or 0, when i = j).

• Following Definition 4.4 we know that each possibility in Bu′
i has the

same fluent set of its previous version.

• Moreover, we know that an stubborn agent preserves all the edges.
In fact the unfolding of the execution of S from u, when considered
from an stubborn agent i’s point of view, simply re-applies S to all the
possibilities in Bu

i . This means that if an agent reached a possibility q
from another possibility p in u she/he will reach q′ from p′ in u′.

• From the last statement, and given that the updated version of each
possibility maintains the same fluent set we can conclude that, if
u |= φ then u′ |= φ (similarly if u ̸|= φ then u′ ̸|= φ) with φ ∈

A. Propositions Proofs 189

{Bi(ℓ), Bi(¬ℓ), (¬Bi(ℓ) ∧ ¬Bi(¬ℓ))} and i ∈ (Sa ∪ {j}).

(4) We identify the set of the possibilities reachable by partial observants
agents with Bu

Pa
. We also recall that this set is equal to CPa in u.

• Now to calculate Bu′
Pa

, following Definition 4.4, we apply P(a, p) to every
element p of Bu

Pa
. This results in all the possibilities p′ of Bu′

Pa
to have

the same fluent set of the corresponding possibility p ∈ Bu
Pa

.

• It is easy to identify two disjoint subsets Bu′
0

Pa
and Bu′

1
Pa

of Bu′
Pa

that
contains only possibility such that:

◦ Bu′
0

Pa
̸|= ℓ;

◦ Bu′
1

Pa
|= ℓ;

◦ (Bu′
0

Pa
∪ Bu′

1
Pa

) = Bu′
Pa

; and
◦ (Bu′

0
Pa
∩ Bu′

1
Pa

) = ∅.

• From these two sets, following Definition 4.4 we can now construct the
sets Bu′

0
Pa,i and Bu′

1
Pa,i, with i ∈ (Fa ∪ {j)}, by applying the sub-functions

χ(f, p, 0) ∀p ∈ Bu′
0

Pa
and χ(f, p, 1) ∀p ∈ Bu′

1
Pa

respectively. These two sets
are simply the set of possibilities reachable from the fully observant
agents (and the executor, considered fully observant by the partially
observants) starting from Bu′

0
Pa

and Bu′
1

Pa
respectively.

• Let us note that trustful, stubborn and the executor are considered
equally by the partially observant given that they do not identify a
truth value but simply believe that the fully observant agents will know
the truth value of the announced fluent.

• Given that the set Bu′
0

Pa,i resulted from the application of the transition
function from the point of view of fully observant agents, we know from
Items 1 and 2 that for ∀p ∈ Bu′

0
Pa,i, p ̸|= ℓ.

• This implies that Bu′
0

Pa,i reaches only possibilities where the interpretation
of ℓ is false and, similarly, in Bu′

1
Pa,i reaches only possibilities where the

interpretation of ℓ is true.

• This means that Bu′
0

Pa,i |= ¬ℓ and Bu′
1

Pa,i |= ℓ.

• It is easy to see, then, that Bu′
0

Pa
|= Bi(¬ℓ) being Bu′

0
Pa,i = {p | p ∈

190 A.4. Proof of Proposition 4.1

⋃︁
q∈B

u′
0

Pa

q(i)} (and similarly Bu′
1

Pa
|= Bi(ℓ)).

• Finally, being Bu′
Pa

= Bu′
0

Pa
∪ Bu′

1
Pa

we can conclude that Bu′
Pa
|= Bi(¬ℓ) ∨

Bi(ℓ)a and therefore u′ |= CPa(Bi(¬ℓ) ∨Bi(ℓ)).

(5) Let us now illustrate the proof of Item (5).

• First, to avoid unnecessary clutter let us use i) Va to indicate the set
of the observant agents, i.e., Va = (Fa ∪Pa ∪ {j}) and; ii) i to indicate
a doubtful agent, i.e., i ∈ Da.

• We then identify the set of all the possibilities reached by the observant
agents in u as Bu

Va
.

• Next, we re-apply the reachability function following the beliefs of the
doubtful agents. This means that the set of beliefs of a doubtful
agent i, from the point of view of the observant ones, is represented by
the set Bu

Va,i = {p | p ∈ Bq
i ∧ q ∈ Bu

i }.

• Now to calculate Bu′
Va,i, following Definition 4.4, we apply both χ(f, p, 0)

and χ(f, p, 1) to every element p of Bu
Va,i.

• This means that the set of updated beliefs of a doubtful agent, from
the point of view of the observant ones, is represented by the union
of the sets Bu′

0
Va,i = {p′ | p′(F) = ((p(F) \ {f}) ∪ {¬f}) ∧ p ∈ Bu

Va,i}
and Bu′

1
Va,i = {p′ | p′(F) = ((p(F) \ {¬f}) ∪ {f}) ∧ p ∈ Bu

Va,i}. It is
important to notice that the truth value of the fluent f in the set of
possibilities Bu′

Va
is not important as the application of χ(f, p, 0/1) on

all these possibilities forces their updated version to set the truth value
of f = 0/1.

• As all the reached possibility from Bu′
0

Va,i and Bu′
0

Va,i have the truth value
of f set to 0 and 1 respectively we can easily derive that the former
entails ¬f, while the latter entails f.

• Moreover, being Bu′
Va,i = (Bu′

0
Va,i ∪ B

u′
1

Va,i), we know that Bu′
Va,i ̸|= f and

Bu′
Va,i ̸|= ¬f. This is true because the subset Bu′

0
Va,i ̸|= f while Bu′

1
Va,i ̸|= ¬f.

• Recalling that, as shown in Appendix A.1, the set Bu
α,i corresponds to

the possibilities reached by Cα(Bi), where α ⊆ D(AG) and i ∈ D(AG),

A. Propositions Proofs 191

it is clear that the set Bu′
Va,i corresponds to the possibilities reached by

CVa(Bi) starting from u′.

• Since the set identified in the last item can derive both f and ¬f,
following the entailment rules of Definition 2.11, we can infer that both
CVa(¬Bi(¬f)) and CVa(¬Bi(f)) hold.

(6) Finally, let us prove Item (6).

• When an agent o ∈ Oa, from Definition 4.4, we know that p′(o) = p(o).
This means that, independently from the how a possibility p′ has been
updated, the point of view any oblivious agent o from p′ is equal to the
one that the point of view of o from p.

• This implies that, ∀p′ ∈ Bu′
i with i ∈ D(AG), p′(o) = p(o) where o ∈ Oa.

• This means that for every element in Bu
i we have an updated version in

Bu′
i that has the same reachability function for each oblivious agent o.

• Then, it is easy to see, that Bu
i,o = Bu′

i,o and, therefore, that these two
sets contain the same possibilities.

• Given that the two sets of possibilities are the same, it means that
the reachability functions that they represent are the same. Being
the two functions the same it means that given a belief formula φ,
u |= Bi(Bo(φ)) iff u′ |= Bi(Bo(φ)).

• Finally, we can conclude that if u |= Bi(Bo(φ)) then u′ |= Bi(Bo(φ)).

aThe two sets are completely disjoint as one only contains possibilities that entail ℓ while
the other only possibilities that do not. This means that does not exist any fully-observant-
edge between possibilities that belongs in two different sets.

192 A.5. Proofs of Propositions 5.1 to 5.3

A.5 Proofs of Propositions 5.1 to 5.3

A.5.1 Abbreviations

To avoid unnecessary clutter instead of using the predicate pos_w(T, R, P) to

identify a generic possibility we will write pos(u) where the lowercase letter

in typewriter font (generally u, v or p) identifies a generic triple (T, R, P).

Whenever possible we will present a more “concrete” version of the ASP rules by

removing parts of the rule that are not necessary to capture its semantics. For

example, the rule for entailing a fluent literal f, that in ASP has the generic form:

entails(T, R, P, F) :- time(T), holds(T, R, P, F), pos_w(T, R, P), fluent(F).

will be rewritten as:

entails(u, f) :- holds(u, f), fluent(f).

Moreover, let us make use of the notations Γ and Φ to identify PLATO’s and mAρ’s

transition function respectively. In the following proofs, we will use p′ instead of

Γ(a, p) or Φ(a, p) when this does not cause ambiguity and make use of the compact

notation u(F) = {f | f ∈ D(F) ∧ u |= f} ∪ {¬f | f ∈ D(F) ∧ u ̸|= f}.

A.5.2 PLATO Entailment Correctness

As a first step we need to prove that the entailment in PLATO is correct with

respect to the one introduced in Definition 2.11. To do that we will identify the

rules in PLATO that correspond with an entailment rule in mAρ (from Section 5.3.1)

and prove their correctness. For the sake of readability let us quickly re-introduce

the entailment rules for possibilities used by mAρ. Let a domain D, the belief

formulae φ, φ1, φ2 ∈ D(BF), a fluent literal f ∈ D(F), an agent i ∈ D(AG), a

group of agents α ⊆ D(AG), and a possibility u ∈ D(S) be given. The entailment

in mAρ is defined as follows:

A. u |= f if u(f) = 1;

B. u |= Bi(φ) if for each v ∈ u(i), v |= φ;

A. Propositions Proofs 193

C. u |= ¬φ if u ̸|= φ;

D. u |= φ1 ∨ φ2 if u |= φ1 or u |= φ2;

E. u |= φ1 ∧ φ2 if u |= φ1 and u |= φ2;

F. u |= Eαφ if u |= Bi(φ) for all i ∈ α;

G. u |= Cαφ if u |= Ek
αφ for every k ≥ 0, where E0

αφ = φ and Ek+1
α φ = Eα(Ek

αφ).

Proof of Proposition 5.1 To prove that the ASP encoding of the
entailment is correct we will identify each entailment rule with a rule of
PLATO.

• Rule A corresponds to:

1. entails(u, f) :- holds(u, f), fluent(f).
2. entails(u,¬f) :- holds(u,¬f), fluent(f).

Let us note that the predicate holds correctness is derived from Propo-
sitions 5.2 and 5.3 (shown later). In fact, being the construction of the
initial state and the update function correct, it is straightforward to see that
∀f ∈ D(F) and ∀u ∈ D(S) the predicate holds(u, f) is true iff u(f) = 1
while holds(u, ¬f) is true iff u(f) = 0.

• Rule B corresponds to:

3. not_entails(u, b(i, φ)) :- not entails(v, φ), believes(u, v, i).
4. entails(u, b(i, φ)) :- not not_entails(u, b(i, φ)).

Similarly to the previous point, following Propositions 5.2 and 5.3, we
can derive the correctness of the predicate believes and consequently
the correctness of reaches. Moreover, for this case, we used an auxiliary
predicate not_entails (ASP Rule 3) that checks whether a given formula
φ is not entailed by a possibility v. Namely we calculate the set U s.t.
∄u ∈ U , u ̸|= φ. This can be rewritten as ∀u ∈ U , u |= φ. Hence, for formulae
of the type b(i, φ) we require that all of the possibilities believed by i do
entail φ as in Rule B.

• Rules C , D, and E correspond to ASP Rules 5 , 6 -7 , and 8 , respectively.

5. entails(u, neg(φ)) :- not entails(u, φ).
6. entails(u, or(φ1, φ2)) :- entails(u, φ1).
7. entails(u, or(φ1, φ2)) :- entails(u, φ2).
8. entails(u, and(φ1, φ2)) :- entails(u, φ1), entails(u, φ2).

194 A.5. Proofs of Propositions 5.1 to 5.3

These mAρ and ASP Rules represent the inductive steps of the entailment
in mAρ and PLATO respectively, and it is straightforward to check their
correspondence. The base cases are Rule A for mAρ and ASP Rules 1 , 2
for PLATO.

• Rule F is used to ease the writing of Rule G without adding any semantic
to the entailment and was not necessary to transpose. The formula Eαφ is,
in fact, just a rewriting of ⋀︁

i∈α
Bi(φ).

• Rule G corresponds to ASP Rule 10 .

9. not_entails(u, c(α, φ)) :- not entails(v, φ), reaches(u, v, i).
10. entails(u, c(α, φ)) :- not not_entails(u, c(α, φ)).

Similarly to ASP Rule 4 for formulae of the type c(α, φ) we require that
all of the possibilities reached by α do entail φ. This is achieved through
an auxiliary predicate not_entails (ASP Rule 9) that checks whether a
given formula φ is not entailed by a possibility v that is reached by α.

A.5.3 PLATO Initial State Construction Correctness

As already mentioned, the initial state description in mAρ must model a finitary

S5-theory to ensure a finite number (up to bisimulation) of e-states. that can satisfy

the initial conditions [Son et al., 2014]. For the sake of readability, let formally

introduce the concept of Finitary S5.

Definition 1.1: Finitary S5-theory [Son et al., 2014]

Let a domain D, a fluent formula ϕ ∈ D, and an agent i ∈ D(AG) be given. A
finitary S5-theory is a collection of formulae of the form:

(i) ϕ (ii) CAG(ϕ)

(iii) CAG(Bi(ϕ) ∨Bi(¬ϕ)) (iv) CAG(¬Bi(ϕ) ∧ ¬Bi(¬ϕ))
Moreover, we require each fluent literal f ∈ D(F) to appear in at least one of
the formulae (ii)–(iv).

Proof of Proposition 5.2 To prove that the initial state generated in
PLATO is equal to the one derived in mAρ we will show that PLATO has the
same behavior as mAρ for each type of initial condition (formulae (i)–(iv)).

(ii) For a clearer proof let us start from the second type of condition, i.e.,

A. Propositions Proofs 195

CAG(ϕ). These formulae are used to determine the set of possible worlds
that are contained in the initial e-state. A fluent literal f is initially known
if there exists a formula CAG(f) or CAG(¬f). In the former case, all the
initial possible world must derive that f is true, whereas in the latter that
f is false. If there are no such formulae for f, then it is said to be initially
unknown.
Following Definition A.1 mAρ initial e-state contains all the worlds s.t.:
(i) are consistent in their fluents’ truth value; (ii) entail the correct truth
value for each initially known fluent literal; and (iii) generate all the different
combinations of the initially unknown fluents. In the same manner, PLATO
determines the set of possible worlds (i.e., pos_w) through the following
rules:

11. unknown_init(ℓ) :- not init(CAG(ℓ)), fluent(ℓ).
12. initial_dim(2**K) :- K = {fluent(ℓ): unknown_init(ℓ)}.
13. pos_w(1..K) :- initial_dim(K).
14. holds(u, ℓ) :- init(CAG(ℓ)), pos_w(u), fluent(ℓ).
15. K/2 { holds(u, f) : pos_w(u)} K/2 :- unknown_init(f),

initial_dim(K).
16. K/2 {not holds(u, f) : pos_w(u)} K/2 :- unknown_init(f),

initial_dim(K).

Where ℓ can be either f or ¬f and the facts init(CAG(ℓ)) are given.

(i) Formulae of type (i) are used to identify which possibility among the initial
ones (determined by the previous step) identifies the pointed world. In
particular, this type of condition is used to express the truth values of
the fluents in the initial pointed world. That is, every formula expressed
through conditions of this type must be true in the initial pointed world.
In PLATO this type of condition is expressed as follows:

17. pointed(u) :- init(ℓ), pos_w(u), holds(u, ℓ), fluent(ℓ).

Where ℓ can be either f or ¬f and the facts init(ℓ) are given.

(iii) Formulae of the form CAG(Bi(ϕ) ∨Bi(¬ϕ)) are used to filter out the edges
of the initial state. In particular, during the initial state construction in
mAρ formulae of this type remove the edges, labeled with i, that link two
possible worlds that “disagree” on the truth value of ϕ. This is also done
in PLATO using the following rules:

18. not_b_init(u, v, i) :- pos_w({u, v}), init(C(or(b(i, ϕ), b(i, ¬ϕ)))).
19. not_b_init(u, v, i) :- pos_w({u, v}), init(C(or(b(i, ϕ), b(i, ¬ϕ)))).
20. believes(u, v, i) :- pos_w({u, v}), not not_b_init(u, v, i).

196 A.5. Proofs of Propositions 5.1 to 5.3

(iv) Formulae of the type (iv) do not filter out any other edges. Since the
construction of the initial state is achieved by removing the edges of a
complete graph—i.e., being G the set of initial possibilities, ∀u ∈ G, ∀i ∈ AG
we have that u(i) = G. We can observe that this type of formulae does not
contribute to this filtering, hence we do not consider them in the initial
state generation in PLATO.

Let us note that, being formulae (i)–(iv) the only ones allowed, PLATO
constructs the initial state only using ASP Rules 11–20 .

A.5.4 PLATO Transition Function Correctness

To prove the correctness of the ASP-based e-state update we will prove the

correspondence between PLATO and mAρ for ontic and epistemic (i.e., sensing and

announcement) actions, separately. Before proving each action type we will briefly

re-illustrate its transition function as defined in Definition 2.12. Once again, let

a domain D, its set of action instances D(AI), the set D(S) of all the e-states

reachable from D(φini) with a finite sequence of action instances, an action instance

a ∈ D(AI), a possibility u ∈ D(S), and an agent i ∈ D(AG) be given.

The transition function Φ : D(AI) × D(S) → D(S) ∪ {∅} for an executable

ontic action1 is Φ(a, u) = u′, where:

e(a, u) = {ℓ | (a causes ℓ) ∈ D}; and

e(a, u) = {¬ℓ | ℓ ∈ e(a, u)} where ¬¬ℓ is replaced by ℓ.

u′(f) =
⎧⎨⎩1 if f ∈ (u(F) \ e(a, u)) ∪ e(a, u)

0 if ¬f ∈ (u(F) \ e(a, u)) ∪ e(a, u)
H.

u′(i) =

⎧⎪⎨⎪⎩
u(i) if i ∈ Oa⋃︁
w∈u(i)

Φ(a,w) if i ∈ Fa
I.

Proof of Proposition 5.3 (for ontic actions) To prove that two
possibilities generated from two different transition functions, starting from
equal possibilities, entail the same formulae we need to prove that the updated
possibilities have the same structural properties. To show this we will identify
Rules H and I with ASP rules.

1If a is not executable in u, then Φ(a, u) = ∅.

A. Propositions Proofs 197

• Rule H corresponds to:

21. holds(u′, ℓ) :- causes(a, ℓ), pos_w(u), pos_w(u′), plan(T, a).
22. holds(u′, ℓ) :- not causes(a, ℓ), holds(u, ℓ), pos_w(u), pos_w(u′),

plan(T, a).

Let us start by showing that the updated possibilities u′ and v′, generated
from Φ(a, u) and Γ(a, v) respectively, are equal with respect to the fluents
truth value. Let us consider the case when the action a causes f; in this
scenario u′(f) is equal to 1 (Rule H) and holds(v′, f) is valid (ASP Rule 21)
meaning that both u′ and v′ consider f to be true.
Similarly, when the action a causes ¬f we will have that u′(f) is equal to 0
(Rule H) while the predicate holds(v′, ¬f) is true (ASP Rule 21) causing
f to be false in u′ and v′.
Finally, we need to show that the fluents that are not modified by the action
have the same truth value both in u′ and v′. This is easily derived in mAρ

as in Rule H the fluents modified are only the ones that belong to the set
e(a, u)—namely the effects of a—while the others are preserved from u(F).
On the other hand, in PLATO, this is accomplished with ASP Rule 22 that
explicitly sets every fluent literal that is not an effect of a as it was in v.
Given that we assumed u and v to entail the same formulae, and therefore to
have the same truth value for fluents, we can conclude that also the fluents
not directly modified by a have the same value in u′ and v′.

• After the fluents truth value we need to prove that the beliefs update is the
same in both mAρ and PLATO.

– Let us start with the beliefs related to the oblivious agents. The first case
of Rule I (Rule I 1) corresponds to:
23. believes(u′, v, i) :- believes(u, v, i), oblivious(i, a),

pos_w({u, u′, v}).
As described in Rule I 1 an oblivious agent i, from u′, believes the same
set of possibilities Ui that she believed in u. In PLATO the behavior
of an oblivious agent i is described by ASP Rule 23 that creates a
predicate believes from v′ to each possibility that belongs to the set Vi
of possibilities believed by i in v. Given that, by definition, u and v must
entail the same formulae we have that the sets of possibilities believed
by an agent starting from u and v must be equals. In particular, this
means that the sets Ui and Vi are the same set and, therefore, an oblivious
agent’s beliefs are the same starting from u′ or v′.

– Next, we will prove that the beliefs of fully observant agents are equals
in u′ and v′. The second case of Rule I (Rule I 2) corresponds to ASP
Rule 24 .

198 A.5. Proofs of Propositions 5.1 to 5.3

24. believes(u′, v′, i) :- believes(u, v, i), fully_obs(i, a),
pos_w({u, u′, v, v′}).

This scenario for mAρ is described in Rule I 2 where it is shown how a
fully observant agent i, starting from u′, believes the updated version
of the possibilities that she believed starting from u. The same holds
for PLATO where ASP Rule 24 creates a predicate believes from v′ to
every updated version of the possibility believed by i in v. This means
that a fully observant agent, that necessarily believes the same set Pi
of possibilities starting from u and v, believes the updated version of Pi
starting from u′ and v′. As shown in the other points the result of both
the transition functions on a possibility p is the same possibility p′ and
therefore the updated version of Pi is equal in both mAρ and PLATO.

In what follows we will provide the proof for the transition function of an

announcement action. While this update is different from the one used for sensing

actions, their behavior is very similar. The only difference is that sensing actions

only consider fluent literals as effects while announcements allow for entire fluent

formulae. Being each fluent literal a fluent formula itself, we have that the proof

for sensing actions falls under the one for announcements. That is why, for the

sake of readability, we will only show that the update is correct for announcements.

The transition function Φ : D(AI) × D(S) → D(S) ∪ {∅} for an executable

announcement action2 is Φ(a, u) = u′, where:

e(a, u) =
⎧⎨⎩0 if u |= ϕ

1 if u |= ¬ϕ

u′(F) = u(F)J.

u′(i) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
u(i) if i ∈ Oa⋃︁
w∈u(i)

Φ(a,w) if i ∈ Pa⋃︁
w∈u(i): e(a,w)=e(a,u)

Φ(a,w) if i ∈ Fa

K.

2If a is not executable in u, then Φ(a, u) = ∅.

A. Propositions Proofs 199

Proof of Proposition 5.3 (for announcement actions) As in the
previous proof, we will identify Rules J and K with ASP rules.

• Rule J corresponds to:

25. holds(u′, ℓ) :- plan(T, a), pos_w(u), pos_w(u′), holds(u, ℓ).

Let us start by showing that the updated possibilities u′ and v′, generated
from Φ(a, u) and Γ(a, v) respectively, are equal with respect to the fluents
truth value. This is easily derived: in fact in mAρ (Equation J) the fluents
interpretation in u′ is equal to the fluents interpretation of u and in PLATO
the predicates holds are valid on the same fluents interpretation in both v
and v′ (ASP Rule 25). Given that we assumed u and v to entail the same
formulae, and therefore to have the same truth value for fluents, we can
conclude that also the fluents have the same value in u′ and v′.

• After the fluents truth value we need to prove that the belief update is the
same in both mAρ and PLATO.

– Let us start with the beliefs related to the oblivious agents. The first case
of Rule K (Rule K 1) corresponds to ASP Rule 26 .
26. believes(u′, v, i) :- believes(u, v, i), oblivious(i, a),

pos_w({u, u′, v}).
As for the ontic actions an oblivious agent i, from u′, believes the same
set of possibilities Ui that she believed in u (Rule K 1) and in PLATO
i believes, from v′, the set Vi of possibilities believed by i in v (ASP
Rule 26). Given that, by definition, u and v must entail the same formulae
we have that the sets of possibilities believed by an agent starting from u
and v must be equals. In particular, this means that the sets Ui and Vi
are the same set and, therefore, an oblivious agent’s beliefs are the same
starting from u′ or v′.

– Next we need to show that the partially observant agents’ beliefs are
equals in u′ and v′. The second case of Rule K (Rule K 2) corresponds to:
27. believes(u′, v′, i) :- believes(u, v, i), partial_obs(i, a),

pos_w({u, u′, v, v′}).
This scenario for mAρ is described by Rule K 2 where it is shown how a
partially observant agent i, starting from u′, believes the updated version
of the possibilities that she believed starting from u. The same holds
for PLATO where ASP Rule 27 creates a predicate believes from v′ to
every updated version of the possibility belived by i in v. This means
that a partially observant agent, that necessarily believes the same set Pi
of possibilities starting from u and v, believes the updated version of Pi
starting from u′ and v′. As shown in the other points the result of both

200 A.5. Proofs of Propositions 5.1 to 5.3

the transition functions on a possibility p is the same possibility p′ and
therefore the updated version of Pi is equal in both mAρ and PLATO.

– Finally, we need to prove that also the beliefs of the fully observant agents
are equals in u′ and v′. The third case of Rule K (Rule K 3) corresponds
to:
28. pos_w(u′) :- plan(T, a), pos_w(u), reach_fully(pointedu, u),

entails(u, ϕ), entails(pointedu, ϕ).
29. pos_w(u′) :- plan(T, a), pos_w(u), believes(pointedu, u, i),

partial_obs(i, a).
30. pos_w(u′) :- plan(T, a), pos_w({u,v}), believes(pointedu, v, i),

partial_obs(i, a), reach_not_oblivious(v, u).
31. believes(u′, v′, i) :- believes(u, v, i), fully_obs(i, a),

holds({u, v}, ℓ),pos_w({u, u′, v, v′}).
Given that Φ(a, u) is assumed to be applied starting from the pointed
world we have that a fully observant agent, starting from the pointed
possibility, only believes possibilities where ϕ has the same truth value
that has in the pointed one. This case is matched exactly in PLATO by
the combination of ASP Rules 28 and 31 . On the other hand, if a world
is reached by a fully observant agent not directly from the pointed world—
i.e., it is reached by a fully observant through a path of partially and fully
observant agents that starts with a partially observant one—its updated
version will only have fully observant edges to the updated possibilities
with the same interpretation of ϕ. This is because Rule K 2 is firstly
applied and finally (possibly after other applications of Rule K) Rule K 3
is used. In fact, by applying Rule K 2 first, Φ is recursively applied on both
possibilities that have and do not have the same interpretation of ϕ with
respect to the pointed world. It is straightforward to see that this rule is
transposed in PLATO through the combination of ASP Rules 30 and 31 .

No one knows everything,
but true wisdom is to know whom to ask.

— Students’ proverb
in Moss, Dynamic Epistemic Logic

[Moss, 2015] Bibliography

Peter Aczel. Non-well-founded sets. CSLI Lecture Notes, 14, 1988.

Martin Allen and Shlomo Zilberstein. Complexity of decentralized control: Special
cases. In 23rd Annual Conference on Neural Information Processing Systems 2009,
7-10 December , Vancouver, British Columbia, Canada, pages 19–27. Curran
Associates, Inc., 2009. URL https://proceedings.neurips.cc/paper/2009/
hash/fec8d47d412bcbeece3d9128ae855a7a-Abstract.html.

Ken Arnold, James Gosling, and David Holmes. The Java programming language.
Addison Wesley Professional, 2005.

Robert Aumann, Adam Brandenburger, et al. Epistemic conditions for Nash
equilibrium. ECONOMETRICA-EVANSTON ILL-, 63:1161–1161, 1995.

Roberta Ballarin. Modern Origins of Modal Logic. In Edward N. Zalta, editor,
The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford
University, Fall 2021 edition, 2021.

Musard Balliu, Mads Dam, and Gurvan Le Guernic. Epistemic temporal logic
for information flow security. In Proceedings of the ACM SIGPLAN 6th
Workshop on Programming Languages and Analysis for Security, PLAS ’11,
pages 6:1–6:12, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0830-4. doi:
10.1145/2166956.2166962.

Alexandru Baltag and Lawrence S. Moss. Logics for epistemic programs. Synthese,
139(2):165–224, 2004.

Alexandru Baltag and Sonja Smets. A Qualitative Theory of Dynamic Interactive
Belief Revision, pages 813–858. Springer International Publishing, Cham, 2016.
ISBN 978-3-319-20451-2. doi: 10.1007/978-3-319-20451-2_39.

Chitta Baral, Gregory Gelfond, Tran Cao Son, and Enrico Pontelli. Using answer
set programming to model multi-agent scenarios involving agents’ knowledge
about other’s knowledge. In Proceedings of the 9th International Conference on
Autonomous Agents and Multiagent Systems: Volume 1 - Volume 1, AAMAS
’10, page 259–266, Richland, SC, 2010. International Foundation for Autonomous
Agents and Multiagent Systems. ISBN 9780982657119.

Chitta Baral, Gregory Gelfond, Enrico Pontelli, and Tran Cao Son. An action
language for multi-agent domains: Foundations. CoRR, abs/1511.01960, 2015.
URL http://arxiv.org/abs/1511.01960.

Chitta Baral, Gregory Gelfond, Enrico Pontelli, and Tran Cao Son. An action
language for multi-agent domains. Artificial Intelligence, 302:103601, 2022. ISSN
0004-3702. doi: https://doi.org/10.1016/j.artint.2021.103601. URL https://
www.sciencedirect.com/science/article/pii/S0004370221001521.

201

https://proceedings.neurips.cc/paper/2009/hash/fec8d47d412bcbeece3d9128ae855a7a-Abstract.html
https://proceedings.neurips.cc/paper/2009/hash/fec8d47d412bcbeece3d9128ae855a7a-Abstract.html
http://dx.doi.org/10.1145/2166956.2166962
http://dx.doi.org/10.1145/2166956.2166962
http://dx.doi.org/10.1007/978-3-319-20451-2_39
http://arxiv.org/abs/1511.01960
http://dx.doi.org/https://doi.org/10.1016/j.artint.2021.103601
https://www.sciencedirect.com/science/article/pii/S0004370221001521
https://www.sciencedirect.com/science/article/pii/S0004370221001521

202 Bibliography

Yoshua Bengio, Yann Lecun, and Geoffrey Hinton. Deep learning for ai. Commun.
ACM, 64(7):58–65, June 2021. ISSN 0001-0782. doi: 10.1145/3448250.

Daniel S. Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. The
complexity of decentralized control of markov decision processes. Mathematics of
operations research, 27(4):819–840, 2002.

Tarek R. Besold, Artur d’Avila Garcez, Sebastian Bader, Howard Bowman, Pedro
Domingos, Pascal Hitzler, Kai-Uwe Kuehnberger, Luis C. Lamb, Daniel Lowd,
Priscila Machado Vieira Lima, Leo de Penning, Gadi Pinkas, Hoifung Poon,
and Gerson Zaverucha. Neural-symbolic learning and reasoning: A survey and
interpretation, 2017.

Ivan Boh. Epistemic Logic in the Later Middle Ages (1st ed.). Routledge, 1993.
ISBN 9780203976685. doi: 10.4324/9780203976685.

T. Bolander, M.H. Jensen, and F. Schwarzentruber. Complexity results in epistemic
planning. In IJCAI International Joint Conference on Artificial Intelligence,
volume 2015-January, pages 2791–2797, 2015.

Thomas Bolander and Mikkel Birkegaard Andersen. Epistemic planning for single-
and multi-agent systems. Journal of Applied Non-Classical Logics, 21(1):9–34,
2011. doi: 10.1016/0010-0277(83)90004-5.

Grady Booch, Francesco Fabiano, Lior Horesh, Kiran Kate, Jonathan Lenchner,
Nick Linck, Andrea Loreggia, Keerthiram Murugesan, Nicholas Mattei, Francesca
Rossi, and Biplav Srivastava. Thinking fast and slow in AI. In Thirty-Fifth
AAAI Conference on Artificial Intelligence, Virtual Event, pages 15042–15046.
AAAI Press, 2021. URL https://ojs.aaai.org/index.php/AAAI/article/
view/17765.

Michael H. Bowling, Rune M. Jensen, and Manuela M. Veloso. Multiagent planning
in the presence of multiple goals. Planning in Intelligent Systems: Aspects,
Motivations and Methods, John Wiley and Sons, Inc, 2005.

Candida Bowtell and Peter Keevash. The n-queens problem, 2021.

Alessandro Burigana, Francesco Fabiano, Agostino Dovier, and Enrico Pontelli.
Modelling multi-agent epistemic planning in asp. Theory and Practice of Logic
Programming, 20(5):593–608, 2020. doi: 10.1017/S1471068420000289.

Christer Bäckström. Expressive equivalence of planning formalisms. Artificial Intel-
ligence, 76(1):17–34, 1995. ISSN 0004-3702. doi: https://doi.org/10.1016/0004-
3702(94)00081-B. URL https://www.sciencedirect.com/science/article/
pii/000437029400081B. Planning and Scheduling.

Cambridge Dictionary. plan. In Cambridge Dictionary. Cambridge University Press,
online edition, 2021. URL https://dictionary.cambridge.org/dictionary/
english/plan.

Jaime G. Carbonell Jr. Politics: Automated ideological reasoning. Cognitive Science,
2(1):27–51, 1978. doi: 10.1207/s15516709cog0201_3.

C. Castelfranchi and R. Falcone. Principles of trust for mas: cognitive anatomy,
social importance, and quantification. In Proceedings International Conference
on Multi Agent Systems (Cat. No.98EX160), pages 72–79, 1998. doi: 10.1109/IC-
MAS.1998.699034.

http://dx.doi.org/10.1145/3448250
http://dx.doi.org/10.4324/9780203976685
http://dx.doi.org/10.1016/0010-0277(83)90004-5
https://ojs.aaai.org/index.php/AAAI/article/view/17765
https://ojs.aaai.org/index.php/AAAI/article/view/17765
http://dx.doi.org/10.1017/S1471068420000289
http://dx.doi.org/https://doi.org/10.1016/0004-3702(94)00081-B
http://dx.doi.org/https://doi.org/10.1016/0004-3702(94)00081-B
https://www.sciencedirect.com/science/article/pii/000437029400081B
https://www.sciencedirect.com/science/article/pii/000437029400081B
https://dictionary.cambridge.org/dictionary/english/plan
https://dictionary.cambridge.org/dictionary/english/plan
http://dx.doi.org/10.1207/s15516709cog0201_3
http://dx.doi.org/10.1109/ICMAS.1998.699034
http://dx.doi.org/10.1109/ICMAS.1998.699034

Bibliography 203

Alexander V. Chagrov and Michael Zakharyaschev. Modal Logic, volume 35 of
Oxford logic guides. Oxford University Press, 1997. ISBN 978-0-19-853779-3.

L. Chu, Seyoun Park, S. Kawamoto, Yan Wang, Yuyin Zhou, Wei Shen, Zhuotun
Zhu, Yingda Xia, Lingxi Xie, Fengze Liu, Qihang Yu, D. Fouladi, S. Shayesteh,
E. Zinreich, J. Graves, K. Horton, A. Yuille, R. Hruban, K. Kinzler, B. Vogelstein,
and E. Fishman. Application of deep learning to pancreatic cancer detection:
Lessons learned from our initial experience. Journal of the American College of
Radiology : JACR, 16 9 Pt B:1338–1342, 2019.

Michael T. Cox. Metacognition in computation: A selected research
review. Artificial Intelligence, 169(2):104–141, 2005. ISSN 0004-
3702. doi: https://doi.org/10.1016/j.artint.2005.10.009. URL https://www.
sciencedirect.com/science/article/pii/S0004370205001530. Special Re-
view Issue.

Michael T. Cox and Anita Raja. Metareasoning: Thinking about Thinking. The
MIT Press, 2011. ISBN 0262014807.

Mathijs De Weerdt and Brad Clement. Introduction to planning in multiagent
systems. Multiagent and Grid Systems, 5(4):345–355, 2009. doi: 10.3233/MGS-
2009-0133.

Mathijs De Weerdt, André Bos, Hans Tonino, and Cees Witteveen. A resource logic
for multi-agent plan merging. Annals of Mathematics and Artificial Intelligence,
37(1-2):93–130, 2003. doi: 10.1023/A:1020236119243.

Agostino Dovier. Logic programming and bisimulation. In ICLP, volume 1433 of
CEUR Workshop Proceedings. CEUR-WS.org, 2015. URL http://ceur-ws.org/
Vol-1433.

Agostino Dovier, Carla Piazza, and Alberto Policriti. An efficient algorithm for
computing bisimulation equivalence. Theoretical Computer Science, 311(1-3):
221–256, 2004.

Edmund H. Durfee. Distributed Problem Solving and Planning, pages 118–149.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2001. ISBN 978-3-540-47745-7.
doi: 10.1007/3-540-47745-4_6.

Francesco Fabiano. Design of a solver for multi-agent epistemic planning. In
Proceedings 35th International Conference on Logic Programming (Technical
Communications), pages 403–412, 2019. doi: 10.4204/EPTCS.306.54.

Francesco Fabiano. Towards a complete characterization of epistemic reasoning: the
notion of trust. In Proceedings of the 35th Italian Conference on Computational
Logic, volume 2710 of CEUR Workshop Proceedings, pages 21–35, Calabria,
Italy (Online), October 13-15 2020. CEUR-WS.org. URL http://ceur-ws.org/
Vol-2710/paper2.pdf.

Francesco Fabiano and Alessandro Dal Palù. An ASP approach for arteries
classification in CT scans. Journal of Logic and Computation, 32(2):331–346, 01
2022. ISSN 0955-792X. doi: 10.1093/logcom/exab087.

Francesco Fabiano, Idriss Riouak, Agostino Dovier, and Enrico Pontelli. Non-well-
founded set based multi-agent epistemic action language. In Proceedings of the
34th Italian Conference on Computational Logic, Trieste, Italy, June 19-21, 2019,
volume 2396 of CEUR Workshop Proceedings, pages 242–259. CEUR-WS.org,
2019. URL http://ceur-ws.org/Vol-2396/paper38.pdf.

http://dx.doi.org/https://doi.org/10.1016/j.artint.2005.10.009
https://www.sciencedirect.com/science/article/pii/S0004370205001530
https://www.sciencedirect.com/science/article/pii/S0004370205001530
http://dx.doi.org/10.3233/MGS-2009-0133
http://dx.doi.org/10.3233/MGS-2009-0133
http://dx.doi.org/10.1023/A:1020236119243
http://ceur-ws.org/Vol-1433
http://ceur-ws.org/Vol-1433
http://dx.doi.org/10.1007/3-540-47745-4_6
http://dx.doi.org/10.4204/EPTCS.306.54
http://ceur-ws.org/Vol-2710/paper2.pdf
http://ceur-ws.org/Vol-2710/paper2.pdf
http://dx.doi.org/10.1093/logcom/exab087
http://ceur-ws.org/Vol-2396/paper38.pdf

204 Bibliography

Francesco Fabiano, Alessandro Burigana, Agostino Dovier, and Enrico Pontelli.
EFP 2.0: A multi-agent epistemic solver with multiple e-state representations.
In Proceedings of the Thirtieth International Conference on Automated Planning
and Scheduling, Nancy, France, October 26-30, 2020, pages 101–109. AAAI Press,
2020. URL https://aaai.org/ojs/index.php/ICAPS/article/view/6650.

Francesco Fabiano, Alessandro Burigana, Agostino Dovier, Enrico Pontelli, and
Tran Cao Son. Multi-agent epistemic planning with inconsistent beliefs, trust
and lies. In Duc Nghia Pham, Thanaruk Theeramunkong, Guido Governatori,
and Fenrong Liu, editors, PRICAI 2021: Trends in Artificial Intelligence -
18th Pacific Rim International Conference on Artificial Intelligence, PRICAI
2021, Hanoi, Vietnam, November 8-12, 2021, Proceedings, Part I, volume 13031
of Lecture Notes in Computer Science, pages 586–597. Springer, 2021a. doi:
10.1007/978-3-030-89188-6_44.

Francesco Fabiano, Biplav Srivastava, Jonathan Lenchner, Lior Horesh, Francesca
Rossi, and Marianna Bergamaschi Ganapini. E-pddl: A standardized way of
defining epistemic planning problems. In Knowledge Engineering for Planning
and Scheduling, page in press, Online, August 2021b. URL https://icaps21.
icaps-conference.org/workshops/KEPS/Papers/KEPS_2021_paper_3.pdf.

Ronald Fagin, Yoram Moses, Joseph Y. Halpern, and Moshe Y. Vardi. Reasoning
About Knowledge. MIT press, 1995. ISBN 9780262061629.

Dirk Fahland, Daniel Lübke, Jan Mendling, Hajo Reijers, Barbara Weber, Matthias
Weidlich, and Stefan Zugal. Declarative versus imperative process modeling
languages: The issue of understandability. In Terry Halpin, John Krogstie, Selmin
Nurcan, Erik Proper, Rainer Schmidt, Pnina Soffer, and Roland Ukor, editors,
Enterprise, Business-Process and Information Systems Modeling, pages 353–366,
Berlin, Heidelberg, 2009. Springer Berlin Heidelberg. ISBN 978-3-642-01862-6.

Richard E Fikes and Nils J. Nilsson. Strips: A new approach to the application of
theorem proving to problem solving. Artificial intelligence, 2(3-4):189–208, 1971.
doi: 10.1016/0004-3702(71)90010-5.

John H Flavell. Metacognition and cognitive monitoring: A new area of
cognitive–developmental inquiry. American psychologist, 34(10):906, 1979. doi:
10.1037/0003-066X.34.10.906.

Nicoletta Fornara. Interaction and communication among autonomous agents in
multiagent systems. PhD thesis, Università della Svizzera italiana, 2003.

M. Fox and D. Long. Pddl2.1: An extension to pddl for expressing temporal
planning domains. Journal of Artificial Intelligence Research, 20:61–124, Dec
2003. ISSN 1076-9757. doi: 10.1613/jair.1129. URL http://dx.doi.org/10.
1613/jair.1129.

Benjamin Franklin. Poor Richard’s almanac, 1750.

Marianna Bergamaschi Ganapini, Murray Campbell, Francesco Fabiano, Lior
Horesh, Jon Lenchner, Andrea Loreggia, Nicholas Mattei, Francesca Rossi,
Biplav Srivastava, and Kristen Brent Venable. Thinking fast and slow in
AI: the role of metacognition. CoRR, abs/2110.01834, 2021. URL https:
//arxiv.org/abs/2110.01834.

Marianna Bergamaschi Ganapini, Murray Campbell, Francesco Fabiano, Lior Horesh,
Jon Lenchner, Andrea Loreggia, Nicholas Mattei, Taher Rahgooy, Francesca Rossi,

https://aaai.org/ojs/index.php/ICAPS/article/view/6650
http://dx.doi.org/10.1007/978-3-030-89188-6_44
http://dx.doi.org/10.1007/978-3-030-89188-6_44
https://icaps21.icaps-conference.org/workshops/KEPS/Papers/KEPS_2021_paper_3.pdf
https://icaps21.icaps-conference.org/workshops/KEPS/Papers/KEPS_2021_paper_3.pdf
http://dx.doi.org/10.1016/0004-3702(71)90010-5
http://dx.doi.org/10.1037/0003-066X.34.10.906
http://dx.doi.org/10.1037/0003-066X.34.10.906
http://dx.doi.org/10.1613/jair.1129
http://dx.doi.org/10.1613/jair.1129
http://dx.doi.org/10.1613/jair.1129
https://arxiv.org/abs/2110.01834
https://arxiv.org/abs/2110.01834

Bibliography 205

Biplav Srivastava, and Kristen Brent Venable. Combining fast and slow thinking
for human-like and efficient navigation in constrained environments. CoRR,
abs/2201.07050, 2022. URL https://arxiv.org/abs/2201.07050.

Peter Gärdenfors and David Makinson. Revisions of knowledge systems using
epistemic entrenchment. In Moshe Y. Vardi, editor, Proceedings of the 2nd
Conference on Theoretical Aspects of Reasoning about Knowledge, Pacific Grove,
CA, USA, March 1988, pages 83–95. Morgan Kaufmann, 1988.

Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. Multi-
shot asp solving with clingo. Theory and Practice of Logic Programming, 19(1):
27–82, 2019.

Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic
programming. In Robert Kowalski, Bowen, and Kenneth, editors, Proceedings of
International Logic Programming Conference and Symposium, pages 1070–1080.
MIT Press, 1988. URL http://www.cs.utexas.edu/users/ai-lab?gel88.

Michael Gelfond and Vladimir Lifschitz. Action languages. Electron. Trans. Artif.
Intell., 2:193–210, 1998. URL http://www.ep.liu.se/ej/etai/1998/007/.

J. Gerbrandy and W. Groeneveld. Reasoning about information change.
Journal of Logic, Language and Information, 6(2):147–169, 1997. doi:
10.1023/A:1008222603071.

Jelle Gerbrandy. Bisimulations on planet Kripke. Inst. for Logic, Language and
Computation, Univ. van Amsterdam, 1999.

Lakemeyer Gerhard and Levesque Hector J. Only knowing. In Hans van Ditmarsch,
Wiebe van der Hoek, Joseph Y. Halpern, and Barteld Kooi, editors, Handbook
of Epistemic Logic, chapter 2, pages 55–76. College Publications, 2015. ISBN
978-1-84890-158-2.

Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning: theory and
practice. Elsevier, 2004.

G. Gigerenzer and H. Brighton. Homo heuristicus: why biased minds make
better inferences. Top Cogn Sci, 1(1):107–143, Jan 2009. doi: 10.1111/j.1756-
8765.2008.01006.x.

Claudia V. Goldman and Shlomo Zilberstein. Decentralized control of cooperative
systems: Categorization and complexity analysis. J. Artif. Intell. Res.(JAIR),
22:143–174, 2004. doi: 10.1613/jair.1427.

Michael S. A. Graziano. Consciousness and the Social Brain. Oxford University
Press, 2013.

Michael S. A. Graziano, Arvid Guterstam, Branden J. Bio, and Andrew I. Wilterson.
Toward a standard model of consciousness: Reconciling the attention schema,
global workspace, higher-order thought, and illusionist theories. Cognitive
Neuropsychology, 37(3-4):155–172, 2020. doi: 10.1080/02643294.2019.1670630.

Carlos Guestrin, Daphne Koller, and Ronald Parr. Multiagent planning with
factored MDPs. In Advances in Neural Information Processing Systems 14,
December 3-8, 2001, Vancouver, British Columbia, Canada, pages 1523–1530.
MIT Press, 2001. URL https://proceedings.neurips.cc/paper/2001/hash/
7af6266cc52234b5aa339b16695f7fc4-Abstract.html.

https://arxiv.org/abs/2201.07050
http://www.cs.utexas.edu/users/ai-lab?gel88
http://www.ep.liu.se/ej/etai/1998/007/
http://dx.doi.org/10.1023/A:1008222603071
http://dx.doi.org/10.1023/A:1008222603071
http://dx.doi.org/10.1111/j.1756-8765.2008.01006.x
http://dx.doi.org/10.1111/j.1756-8765.2008.01006.x
http://dx.doi.org/10.1613/jair.1427
http://dx.doi.org/10.1080/02643294.2019.1670630
https://proceedings.neurips.cc/paper/2001/hash/7af6266cc52234b5aa339b16695f7fc4-Abstract.html
https://proceedings.neurips.cc/paper/2001/hash/7af6266cc52234b5aa339b16695f7fc4-Abstract.html

206 Bibliography

Bob Hanson. Sudoku Assistant/Solver. https://www.stolaf.edu/people/
hansonr/sudoku/, September 2021.

Yuval N. Harari. Sapiens: a brief history of humankind. Harper, 2015, 2015. URL
https://search.library.wisc.edu/catalog/9910419687402121.

Stephen Hawking and Leonard Mlodinow. The Grand Design. Bantam Books, 2010.
ISBN 0-553-80537-1.

Malte Helmert. Concise finite-domain representations for pddl planning
tasks. Artif. Intell., 173(5–6):503–535, April 2009. ISSN 0004-3702. doi:
10.1016/j.artint.2008.10.013.

Andreas Herzig, Jérôme Lang, and Pierre Marquis. Action progression and revision
in multiagent belief structures. In Sixth Workshop on Nonmonotonic Reasoning,
Action, and Change (NRAC 2005). Citeseer, 2005.

Andreas Herzig, Emiliano Lorini, Jomi Fred Hübner, and Laurent Vercouter.
A logic of trust and reputation. Log. J. IGPL, 18(1):214–244, 2010. doi:
10.1093/jigpal/jzp077.

Jaakko Hintikka. Knowledge and Belief: An Introduction to the Logic of the Two
Notions. Ithaca: Cornell University Press, 1962.

Xiao Huang, Biqing Fang, Hai Wan, and Yongmei Liu. A general multi-agent
epistemic planner based on higher-order belief change. In Proceedings of the
Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI
2017, Melbourne, Australia, August 19-25, 2017, pages 1093–1101. ijcai.org, 2017.
doi: 10.24963/ijcai.2017/152.

Martin Holm Jensen. Epistemic and doxastic planning. Technical University of
Denmark, Applied Mathematics and Computer Science, 2014.

Daniel Kahneman. Thinking, Fast and Slow. Farrar, Straus and Giroux, 2011. ISBN
978-0374275631.

Vaibhav Katewa. Analysis and design of multi-agent systems under communication
and privacy constraints. University of Notre Dame, 2017.

Pascal Kerschke, Holger H. Hoos, Frank Neumann, and Heike Trautmann. Auto-
mated algorithm selection: Survey and perspectives. Evol. Comput., 27(1):3–45,
2019. doi: 10.1162/evco_a_00242.

Emil Keyder and Héctor Geffner. Heuristics for planning with action costs revisited.
In Proceedings of the 2008 Conference on ECAI 2008: 18th European Conference
on Artificial Intelligence, pages 588–592, Amsterdam, The Netherlands, The
Netherlands, 2008. IOS Press. ISBN 978-1-58603-891-5.

Filippos Kominis and Hector Geffner. Beliefs in multiagent planning: From one
agent to many. In Proceedings of the Twenty-Fifth International Conference
on Automated Planning and Scheduling, ICAPS 2015, Jerusalem, Israel, June
7-11, 2015, pages 147–155. AAAI Press, 2015. URL http://www.aaai.org/ocs/
index.php/ICAPS/ICAPS15/paper/view/10617.

Iuliia Kotseruba and John K. Tsotsos. 40 years of cognitive architectures: core
cognitive abilities and practical applications. Artificial Intelligence Review, 53(1):
17–94, Jan 2020. doi: 10.1007/s10462-018-9646-y.

https://www.stolaf.edu/people/hansonr/sudoku/
https://www.stolaf.edu/people/hansonr/sudoku/
https://search.library.wisc.edu/catalog/9910419687402121
http://dx.doi.org/10.1016/j.artint.2008.10.013
http://dx.doi.org/10.1016/j.artint.2008.10.013
http://dx.doi.org/10.1093/jigpal/jzp077
http://dx.doi.org/10.1093/jigpal/jzp077
http://dx.doi.org/10.24963/ijcai.2017/152
http://dx.doi.org/10.1162/evco_a_00242
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS15/paper/view/10617
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS15/paper/view/10617
http://dx.doi.org/10.1007/s10462-018-9646-y

Bibliography 207

Jerald D. Kralik, Jee Hang Lee, Paul S. Rosenbloom, Philip C. Jackson, Susan L.
Epstein, Oscar J. Romero, Ricardo Sanz, Othalia Larue, Hedda R. Schmidtke,
Sang Wan Lee, and Keith McGreggor. Metacognition for a common model of
cognition. Procedia Computer Science, 145:730–739, 2018. ISSN 1877-0509. doi:
https://doi.org/10.1016/j.procs.2018.11.046. URL https://www.sciencedirect.
com/science/article/pii/S1877050918323329. Postproceedings of the 9th
Annual International Conference on Biologically Inspired Cognitive Architectures,
BICA 2018 (Ninth Annual Meeting of the BICA Society), held August 22-24,
2018 in Prague, Czech Republic.

Saul A. Kripke. Semantical analysis of modal logic i normal modal propo-
sitional calculi. Mathematical Logic Quarterly, 9(5-6):67–96, 1963. doi:
10.1002/malq.19630090502.

Ugur Kuter, Dana S. Nau, Elnatan Reisner, and Robert P. Goldman. Using classical
planners to solve nondeterministic planning problems. In Proceedings of the
Eighteenth International Conference on Automated Planning and Scheduling,
ICAPS 2008, Sydney, Australia, September 14-18, 2008, pages 190–197. AAAI,
2008. URL http://www.aaai.org/Library/ICAPS/2008/icaps08-024.php.

Heiner Lasi, Peter Fettke, Hans-Georg Kemper, Thomas Feld, and Michael Hoffmann.
Industry 4.0. Business & information systems engineering, 6(4):239–242, 2014.
doi: 10.1007/s12599-014-0334-4.

Tiep Le, Francesco Fabiano, Tran Cao Son, and Enrico Pontelli. EFP and PG-EFP:
Epistemic forward search planners in multi-agent domains. In Proceedings of the
Twenty-Eighth International Conference on Automated Planning and Scheduling,
pages 161–170, Delft, The Netherlands, June 24–29 2018. AAAI Press. ISBN
978-1-57735-797-1. URL https://aaai.org/ocs/index.php/ICAPS/ICAPS18/
paper/view/17733.

Vladimir Lifschitz. What is answer set programming? In Proceedings of the
23rd National Conference on Artificial Intelligence - Volume 3, AAAI’08, page
1594–1597. AAAI Press, 2008. ISBN 9781577353683.

Nir Lipovetzky and Hector Geffner. Width-based algorithms for classical planning:
New results. In Torsten Schaub, Gerhard Friedrich, and Barry O’Sullivan, editors,
ECAI 2014 - 21st European Conference on Artificial Intelligence, 18-22 August
2014, Prague, Czech Republic - Including Prestigious Applications of Intelligent
Systems (PAIS 2014), volume 263 of Frontiers in Artificial Intelligence and
Applications, pages 1059–1060. IOS Press, 2014. doi: 10.3233/978-1-61499-419-0-
1059.

Nir Lipovetzky and Hector Geffner. Best-first width search: Exploration and
exploitation in classical planning. In Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence, pages 3590–3596, San Francisco, Califor-
nia, USA, February 4-9 2017. URL http://aaai.org/ocs/index.php/AAAI/
AAAI17/paper/view/14862.

Michael L. Littman. Markov games as a framework for multi-agent reinforcement
learning. In Machine Learning Proceedings 1994, pages 157–163. Elsevier, 1994.
doi: 10.1016/B978-1-55860-335-6.50027-1.

Gary Marcus. The next decade in ai: Four steps towards robust artificial intelligence,
2020.

http://dx.doi.org/https://doi.org/10.1016/j.procs.2018.11.046
http://dx.doi.org/https://doi.org/10.1016/j.procs.2018.11.046
https://www.sciencedirect.com/science/article/pii/S1877050918323329
https://www.sciencedirect.com/science/article/pii/S1877050918323329
http://dx.doi.org/10.1002/malq.19630090502
http://dx.doi.org/10.1002/malq.19630090502
http://www.aaai.org/Library/ICAPS/2008/icaps08-024.php
http://dx.doi.org/10.1007/s12599-014-0334-4
https://aaai.org/ocs/index.php/ICAPS/ICAPS18/paper/view/17733
https://aaai.org/ocs/index.php/ICAPS/ICAPS18/paper/view/17733
http://dx.doi.org/10.3233/978-1-61499-419-0-1059
http://dx.doi.org/10.3233/978-1-61499-419-0-1059
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14862
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14862
http://dx.doi.org/10.1016/B978-1-55860-335-6.50027-1

208 Bibliography

John McCarthy, Marvin L. Minsky, Nathaniel Rochester, and Claude E. Shannon.
A proposal for the dartmouth summer research project on artificial intelligence,
august 31, 1955. AI Magazine, 27(4):12, Dec. 2006. doi: 10.1609/aimag.v27i4.1904.
URL https://ojs.aaai.org/index.php/aimagazine/article/view/1904.

Drew McDermott, Malik Ghallab, Craig Knoblock, David Wilkins, Anthony Barrett,
Dave Christianson, Marc Friedman, Chung Kwok, Keith Golden, Scott Penberthy,
David Smith, Ying Sun, and Daniel Weld. PDDL - the planning domain definition
language. Technical report, Technical Report, 1998.

Fiona McNeill and Alan Bundy. Facilitating interaction between virtual agents by
changing ontological representation. In Encyclopedia of E-Business Development
and Management in the Global Economy, pages 934–941. IGI Global, 2010.

John-Jules Ch. Meyer. Modal Epistemic and Doxastic Logic, pages 1–38. Springer
Netherlands, Dordrecht, 2003. ISBN 978-94-017-4524-6. doi: 10.1007/978-94-017-
4524-6_1.

Lawrence S. Moss. Dynamic epistemic logic. In Hans van Ditmarsch, Wiebe van der
Hoek, Joseph Y. Halpern, and Barteld Kooi, editors, Handbook of Epistemic Logic,
chapter 6, pages 262–312. College Publications, 2015. ISBN 978-1-84890-158-2.

Andrzej Mostowski. An undecidable arithmetical statement. Fundamenta
Mathematicae, 36(1):143–164, 1949. doi: 10.4064/fm-36-1-143-164. URL
http://eudml.org/doc/213187.

Christian J. Muise, Vaishak Belle, Paolo Felli, Sheila A. McIlraith, Tim Miller,
Adrian R. Pearce, and Liz Sonenberg. Planning over multi-agent epistemic
states: A classical planning approach. In Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence, January 25-30, 2015, Austin, Texas, USA,
pages 3327–3334. AAAI Press, 2015. URL http://www.aaai.org/ocs/index.
php/AAAI/AAAI15/paper/view/9974.

Thomas O. Nelson. Metamemory: A theoretical framework and new find-
ings. Psychology of Learning and Motivation, 26:125–173, 1990. ISSN 0079-
7421. doi: https://doi.org/10.1016/S0079-7421(08)60053-5. URL https://www.
sciencedirect.com/science/article/pii/S0079742108600535.

Nicholas Nethercote and Julian Seward. Valgrind: A framework for heavyweight
dynamic binary instrumentation. SIGPLAN Not., 42(6):89–100, jun 2007. ISSN
0362-1340. doi: 10.1145/1273442.1250746.

Robert Paige and Robert E Tarjan. Three partition refinement algorithms. SIAM
Journal on Computing, 16(6):973–989, 1987.

Edwin P. D. Pednault. ADL and the State-Transition Model of Action. Journal
of Logic and Computation, 4(5):467–512, 10 1994. ISSN 0955-792X. doi:
10.1093/logcom/4.5.467.

Ingmar Posner. Robots thinking fast and slow: On dual process theory and
metacognition in embodied AI, 2020. URL https://openreview.net/forum?
id=iFQJmvUect9.

Henry Prakken. Logical tools for modelling legal argument: a study of defeasible
reasoning in law, volume 32. Springer Science & Business Media, 2013.

Rasmus Rendsvig and John Symons. Epistemic Logic. In Edward N. Zalta, editor,
The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford
University, Summer 2021 edition, 2021.

http://dx.doi.org/10.1609/aimag.v27i4.1904
https://ojs.aaai.org/index.php/aimagazine/article/view/1904
http://dx.doi.org/10.1007/978-94-017-4524-6_1
http://dx.doi.org/10.1007/978-94-017-4524-6_1
http://dx.doi.org/10.4064/fm-36-1-143-164
http://eudml.org/doc/213187
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9974
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9974
http://dx.doi.org/https://doi.org/10.1016/S0079-7421(08)60053-5
https://www.sciencedirect.com/science/article/pii/S0079742108600535
https://www.sciencedirect.com/science/article/pii/S0079742108600535
http://dx.doi.org/10.1145/1273442.1250746
http://dx.doi.org/10.1093/logcom/4.5.467
http://dx.doi.org/10.1093/logcom/4.5.467
https://openreview.net/forum?id=iFQJmvUect9
https://openreview.net/forum?id=iFQJmvUect9

Bibliography 209

Silvia Richter and Matthias Westphal. The lama planner: Guiding cost-based
anytime planning with landmarks. Journal of Artificial Intelligence Research, 39:
127–177, 2010. doi: 10.1613/jair.2972.

Idriss Riouak. Non-well-founded set based multi-agent epistemic action language.
Unpublished MSc Thesis, 2019.

Leif Benjamin Rodenhäuser. A matter of trust: Dynamic attitudes in epistemic
logic. PhD thesis, Universiteit van Amsterdam [Host], 2014.

Stuart J. Russell and Peter Norvig. Artificial Intelligence - A Modern Approach,
Third International Edition. Pearson Education, 2010. ISBN 978-0-13-207148-
2. URL http://vig.pearsoned.com/store/product/1,1207,store-12521_
isbn-0136042597,00.html.

Boris Schling. The Boost C++ Libraries. XML Press, 2011. ISBN 0982219199.

Amitai Shenhav, Matthew M. Botvinick, and Jonathan D. Cohen. The expected
value of control: An integrative theory of anterior cingulate cortex function. Neu-
ron, 79(2):217–240, July 2013. ISSN 0896-6273. doi: 10.1016/j.neuron.2013.07.007.

Raymond R. Smullyan. First-order logic, volume 43. Springer-Verlag Berlin
Heidelberg, 1968. ISBN 978-3-642-86718-7. doi: 10.1007/978-3-642-86718-7.

Tran Cao Son, Enrico Pontelli, Chitta Baral, and Gregory Gelfond. Finitary s5-
theories. In European Workshop on Logics in Artificial Intelligence, pages 239–252.
Springer, 2014. doi: 10.1093/jigpal/jzm059.

Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley Professional,
4th edition, 2013. ISBN 0321563840.

Alice Tarzariol. Evolution of algorithm portfolio for solving strategies. In Alberto
Casagrande and Eugenio G. Omodeo, editors, Proceedings of the 34th Italian
Conference on Computational Logic, Trieste, Italy, June 19-21, 2019, volume
2396 of CEUR Workshop Proceedings, pages 327–341. CEUR-WS.org, 2019. URL
http://ceur-ws.org/Vol-2396/paper37.pdf.

Alejandro Torreño, Eva Onaindia, and Óscar Sapena. Fmap: Distributed cooperative
multi-agent planning. Applied Intelligence, 41(2):606–626, 2014.

Alan M. Turing. Computing machinery and intelligence. Mind, 59(October):433–460,
1950. doi: 10.1093/mind/LIX.236.433.

Johan Van Benthem, Jan Van Eijck, and Barteld Kooi. Logics of communication
and change. Information and computation, 204(11):1620–1662, 2006. doi:
10.1016/j.ic.2006.04.006.

Hans Van Ditmarsch, Wiebe van Der Hoek, and Barteld Kooi. Dynamic Epistemic
Logic, volume 337. Springer Netherlands, 2007. ISBN 978-1-4020-6908-6. doi:
10.1007/978-1-4020-5839-4.

Hans van Ditmarsch, Wiebe van der Hoek, Joseph Y. Halpern, and Barteld Kooi,
editors. Handbook of Epistemic Logic. College Publications, 2015. ISBN 978-1-
84890-158-2.

Jan van Eijck. Dynamic Epistemic Modelling. CWI. Software Engineering [SEN],
2004.

http://dx.doi.org/10.1613/jair.2972
http://vig.pearsoned.com/store/product/1,1207,store-12521_isbn-0136042597,00.html
http://vig.pearsoned.com/store/product/1,1207,store-12521_isbn-0136042597,00.html
http://dx.doi.org/10.1016/j.neuron.2013.07.007
http://dx.doi.org/10.1007/978-3-642-86718-7
http://dx.doi.org/10.1093/jigpal/jzm059
http://ceur-ws.org/Vol-2396/paper37.pdf
http://dx.doi.org/10.1093/mind/LIX.236.433
http://dx.doi.org/10.1016/j.ic.2006.04.006
http://dx.doi.org/10.1016/j.ic.2006.04.006
http://dx.doi.org/10.1007/978-1-4020-5839-4
http://dx.doi.org/10.1007/978-1-4020-5839-4

210 Bibliography

Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. CreateSpace,
Scotts Valley, CA, 2009. ISBN 1441412697.

Hai Wan, Rui Yang, Liangda Fang, Yongmei Liu, and Huada Xu. A complete
epistemic planner without the epistemic closed world assumption. In IJCAI
International Joint Conference on Artificial Intelligence, pages 3257–3263, Buenos
Aires, Argentina, July 25-31 2015. URL http://ijcai.org/Abstract/15/459.

Quan Yu, Ximing Wen, and Yongmei Liu. Multi-agent epistemic explanatory
diagnosis via reasoning about actions. In Francesca Rossi, editor, IJCAI 2013,
Proceedings of the 23rd International Joint Conference on Artificial Intelligence,
Beijing, China, August 3-9, 2013, pages 1183–1190. IJCAI/AAAI, 2013. URL
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6631.

http://ijcai.org/Abstract/15/459
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6631

	Comprehensive Multi-Agent Epistemic Planners
	Background
	Imperative and Declarative Programming
	Imperative Programming
	Declarative Programming

	EFP: an Epistemic Forward Planner
	The Overall Architecture
	EFP 2.0
	Experimental Evaluation
	Alternative Transition Functions

	Optimizations and Alternative Search Strategies
	Code Optimizations
	Alternative Search Strategies and Heuristics

	PLATO: an Epistemic Planner in ASP
	Modeling MEP using ASP
	Epistemic states
	Entailment
	Initial state generation
	Transition function
	Optimizations
	Multi-shot encoding

	Experimental Evaluation
	Correctness of PLATO

	``Fast and Slow'' Epistemic Planning
	Background
	Theories of Human Decision Making
	AI Thinking, Fast and Slow

	MEP System-1 and System-2
	Meta-cognition

	A Fast and Slow Epistemic Architecture
	E-PDDL: Standardized MEP Problems Language
	Problem Domain
	Problem Instance
	From Implicit to Explicit Belief Update

	The Overall Architecture

	Conclusion
	Propositions Proofs
	Preliminary Definitions
	Proofs of Propositions 2.3 to 2.5
	Proofs of Propositions 3.1 and 3.2
	Updated States Size Finiteness
	Proofs

	Proof of Proposition 4.1
	Proofs of Propositions 5.1 to 5.3
	Abbreviations
	PLATO Entailment Correctness
	PLATO Initial State Construction Correctness
	PLATO Transition Function Correctness

	Bibliography

