
Approximate Counting with Deterministic
Guarantees for Affinity Computation∗

Clément Viricel1,2, David Simoncini1, David Allouche1, Simon de Givry1,
Sophie Barbe2, and Thomas Schiex1

1 Unité de Mathématiques et Informatique Appliquées UR 875, INRA, F-31320
Castanet Tolosan, France,

2 Laboratoire d’Ingénierie des Systèmes Biologiques et des Procédés, INSA, UMR
INRA 792/CNRS 5504, F-31400 Toulouse, France

Abstract. Computational Protein Design aims at rationally designing
amino-acid sequences that fold into a given three-dimensional struc-
ture and that will bestow the designed protein with desirable proper-
ties/functions. Usual criteria for design include stability of the designed
protein and affinity between it and a ligand of interest. However, estimat-
ing the affinity between two molecules requires to compute the partition
function, a #P-complete problem.
Because of its extreme computational cost, bio-physicists have designed
the K∗ algorithm, which combines Best-First A∗ search with dominance
analysis to provide an estimate of the partition function with determin-
istic guarantees of quality. In this paper, we show that it is possible to
speed up search and keep reasonable memory requirement using a Cost
Function Network approach combining Depth First Search with arc con-
sistency based lower bounds. We describe our algorithm and compare
our first results to the Computational Protein Design (CPD)-dedicated
software Osprey 2.0.

Keywords: computational protein design, protein-ligand affinity, con-
straint Programming, cost function network, soft arc consistency, count-
ing problems, weighted #CSP

Introduction

Proteins are polymer chains composed of amino-acids. Natural evolutionary pro-
cesses have fashioned by means of amino-acid sequence variations (mutations,
recombinations and duplications) an array of proteins endowed with functions
ranging from catalysis, signaling to recognition and repair [2]. These functions
are made possible by the ability of proteins to self-assemble into well-defined

? This workshop paper is an updated version of reference [1]. Compared to this paper,
the lower bound used has been simply improved by accounting for unary costs,
leading to the speedups shown in Table 1.

three-dimensional (3D) structures specified by their amino-acid sequences and
hence, to interact with various types of molecular partners with high affinity and
selectivity. Despite a plethora of functionalities, there is still an ever-increasing
demand for proteins endowed with specific properties/functions which are not
known to exist in nature. To this end, protein engineering has become a key
technology to generate the proteins with the targeted properties/functions [3].
However, despite significant advances, protein engineering still suffers from a
major drawback related to the limited diversity of protein sequences that can
be explored in regard to the huge potential sequence space. If one considers that
each position of a small protein of 100 amino-acid can be replaced by any of
the 20 possible natural amino-acids, a theoretical space size of 20100 sequences
is reached. One can thus easily imagine that sampling such large spaces is out of
reach of wet methods. Consequently, approaches aiming at rationalizing protein
evolution and favoring exploration of sequence regions of particular relevance for
the targeted property/function are crucially needed to increase the odds of suc-
cess to tailor the desired proteins while decreasing experimental efforts. In this
context, computational methods have gained a prominent place in protein en-
gineering strategies. Structure-based Computational Protein Design (CPD) has
emerged with the increasing number of protein structures available in databases
and the advents in computational structural biology and chemistry to under-
stand fundamental forces between atoms and (macro)molecules. CPD uses the
tight relationships existing between the function and the structure of a protein
to design novel functions by searching the amino-acid sequences compatible with
a known 3D scaffold, that should be able to carry out the desired function. CPD
can thus be seen as the inverse folding problem [4] which can be formulated as
an optimization problem, solvable computationally. In recent years, CPD has ex-
perienced important success, especially in the design of therapeutic proteins [5],
novel enzymes [6]. . . Nevertheless, the computational design of proteins with de-
fined affinity for a given partner (such as a small molecule, a substrate or a
peptide) which is essential for large range of applications, continues to present
challenges.

Estimating the binding affinity between two molecular partners requires to
compute the so-called partition function of each of the molecules and of the sys-
tem formed by the two bound molecules. The partition function of a molecule
that can have states ` ∈ Λ each with energy E` is defined through the Boltz-
mann distribution as

∑
`∈Λ exp(− E`

kB ·T) where T is the temperature and kB is
the Boltzmann constant. Computing the partition function of a system at con-
stant temperature therefore requires to sum a simple function of the energy over
a large set of possible states Λ. This computation is easy for systems with a
small number of states. It becomes extremely complex for systems that have
a number of states which is exponential in the size of their description. Even
with the usual simplifying assumptions adopted in the field of CPD, the prob-
lem is actually #P-complete, a computational complexity class of problems with
extreme complexity.

Fig. 1. A local view of a protein backbone and side-chains. Changes can be caused
by amino acid identity substitutions (for example D/L) or by side-chain reorienta-
tions (rotamers). A typical rotamer library for one amino acid is shown on the right
(ARG=Arginine).

A protein is defined by a supporting skeleton (or backbone) which is built by
polymerization. Each amino-acid in the protein is composed of two parts: one
part participates in the construction of the linear backbone of the protein and
the remaining part is called the side-chain of the amino-acid. At each position,
one may choose among 20 different possible side-chains, each defining a different
amino-acid type, associated with a specific letter in the alphabet. A protein can
therefore be described as a sequence of letters.

To perform their function, proteins need to be folded into a specific 3D shape
which is defined by the amino-acid composition and the effect of various atomic
forces (torsion angles, electrostatic, van der Waals, solvation effects). The precise
conformation of a protein is therefore defined by the conformation of the back-
bone and the relative conformation of all its side-chains. A usual simplification
assumption in CPD is to assume that the backbone is rigid (it has only one
conformation) and that the side-chains can only adopt a specific set of discrete
low-energy conformations, called rotamers. Several rotamer libraries have been
defined over the last two decades. For a protein with a sequence S of length n,
with a known composition (side-chains), the set of reachable conformations ΛS is
then defined as the cross-product of the set of the rotamers of every amino-acid.
A conformation ` is just a choice of rotamer for each side-chain of the protein.

The computation of the partition function ZA of a molecule A requires the
computation of the energy of every conformation. A second usual assumption of
CPD states that the energy of a molecule, defined as a function of the conforma-
tion `, can be decomposed as a sum of a constant term (describing the energy
of the backbone), a variable term for each side-chain (describing the interaction
between the side-chain and the backbone and side-chain internal interactions)
and a variable term for every pair of side-chains that interact (describing the
interaction between the two corresponding side-chains). Stated otherwise, the
energy can be pairwise decomposed. Different such pairwise decompositions of
the energy have been built over the last decades.

The affinity of 2 molecules A and B is then proportional to the ratio of the
partition function of the complex formed by the two molecules denoted ZAB
to the product of their partition functions ZA × ZB . One affinity estimation
therefore requires to compute three partition functions. The estimated affinity
being just the criteria used for molecule design, i.e. to fix the amino-acid se-
quence, it must be repeatedly evaluated for each possible sequence considered
for design. With a choice among 20 naturally occurring amino-acids at every
position, the size of the sequence space is also exponential. This is why most
affinity based designs or analysis are usually done on very small or drastically
simplified systems.

In this paper, we focus on the problem of computing a lower estimate of
the partition function of a protein with deterministic guarantees, enabling to
approximate the affinity. The algorithm we define can be seen as an evolution of
a traditional approximate partition function computation algorithm developed
for affinity approximation called K∗ [7]. The K∗ algorithm combines dominance
analysis with A∗ Best First Search to produce a sequence of conformations of
increasing energy. This sequence can be used to compute a running sum of
contributions to the partition function and prune conformations that cannot
contribute sufficiently to the partition function (because of their high energy).

Our method follows the same idea but relies on the use of specific lower
bounding techniques that have been developed for exact combinatorial opti-
mization in the last decades in the field of weighted Constraint Programming [8]
and more precisely Cost Function Network and local consistencies [9]. While the
use of such bounds is usual for exact optimization, this is, to our knowledge,
the first use of soft local consistency to prune the search space of approximate
partition function computation. The second new ingredient is a shift from space-
intensive best-first search to depth-first search, completed by on-the-fly variable
elimination [10].

We compare our algorithm to the K∗ algorithm implemented in Osprey [11],
a CPD-dedicated platform.

1 Background and Notations

We denote by AA the set of all 20 amino-acid types. We consider an initial
protein defined by sequence of amino acids S = s1, . . . , sn, si ∈ AA. The protein
S has a 3D scaffold which is selected amongst high resolution 3D structures
determined either from X-ray crystallography or Nuclear Magnetic Resonance
(and deposited in the Protein Data Bank). This defines an initial fixed backbone.

Among all positions of S, some positions M ⊂ {1, . . . , n} are considered as
mutable and can be replaced by any amino acid in a subset AAi

of AA. For each
amino-acid type t in AA, we have a discrete library of possible conformations
(or rotamers) denoted as Λt. Given the sequence S, the atomic coordinates of
the associated backbone and a choice `i ∈ ΛSi

of a given conformation for each
side-chain, the energy of the global conformation can be written as a function

of the vector of rotamers used, denoted as ` ∈ ΛS =
∏
i ΛSi

:

ES(`) = ES∅ +
∑
i

ES(`i) +
∑
i

∑
j>i

ES(`i, `j)

where ES is the potential energy of the protein S, ES∅ is a constant energy
contribution capturing interactions between fixed parts of the model, ES(`i) is
the energy contribution of rotamer `i at position i capturing internal interactions
or interactions with the backbone, and ES(`i, `j) is the pairwise interaction
energy between rotamer `i at position i and rotamer `j at position j [12]. Thanks
to this decomposition, each energy terms, in kcal ·mol−1, can be pre-computed
and cached, allowing to quickly compute the energy of a conformation once the
rotamer used at each position is fixed.

Assuming for the sake of simplicity that no symmetry or state degeneracy
exists in the molecule considered, the partition function of a protein S for a fixed
position, rotation and backbone over all side-chain conformations is defined as:

ZS =
∑
`∈ΛS

e
−ES(`)

kBT

This sum contains an exponential number of terms. The exponential distri-
bution leads to terms with sharp changes in magnitude. Most significant terms
correspond to low energies. Our aim is to provide a deterministic algorithm that
computes a lower approximation ẐS such that:

ZS

1 + ε
≤ ẐS ≤ ZS (1)

The problem of exactly computing ZS in this case is known to be #P-
complete. The “simple” problem of finding a rotamer vector ` with energy be-
low a value k is NP-hard [13]. Usual methods for estimating ZS are stochastic
methods using Monte-Carlo (Markov-chain) approaches with no non-asymptotic
guarantees [14]. In the context of protein design, the K∗ algorithm is a simple
algorithm that provides an approximation to ZS satisfying (1). We now quickly
present it.

1.1 The K∗ Algorithm

The K∗ algorithm is an approximate counting algorithm that exploits optimiza-
tion techniques. The first component is a dominance analysis called ”Dead End
Elimination” (DEE [12]). This process compares a worst case energy for a ro-
tamer `i ∈ ΛSi

with a best case cost for a different rotamer `′i ∈ ΛSi
and prunes

`′i ∈ ΛSi if its best case energy is larger than the other energy (replacing `′i by
`i in any solution can only improve the energy) i.e., iff:

[
ES(`′i) +

∑
j 6=i

min
`j∈ΛSj

ES(`′i, `j)
]
−

[
ES(`i) +

∑
j 6=i

max
`j∈ΛSj

ES(`i, `j)
]
> 0 (2)

This is done iteratively on all positions i and all possible pairs of rotamers in
Λi, pruning the space of conformations.

The second component is a best-first branch and bound A∗ optimization
algorithm exploring a tree where each node corresponds to a partially determined
conformation where a subset of all positions have fixed rotamers. The sons of
a node are defined by choosing a position i with a yet unfixed rotamer and
creating one node per possible rotamer `i ∈ ΛSi

. Leaves correspond to completely
determined conformations `. At a given node at depth d with fixed rotamers
` = (`1, . . . , `d), it is possible to compute a lower bound Lb(`) on the energy of
any complete conformation below this node. Following the A∗ terminology, this
lower bound defines an ”admissible heuristics” and is defined as Lb(`) =

d∑
i=1

E(`i) +

d∑
j=i+1

E(`i, `j)︸ ︷︷ ︸
Fixed

+

n∑
j=d+1

[
min

`j∈ΛSj

(E(`j) +

d∑
i=1

E(`i, `j)︸ ︷︷ ︸
Fixed-Unfixed

+
n∑

k=j+1

min
`k∈ΛSk

E(`j , `k)

︸ ︷︷ ︸
Unfixed

)
]

Starting from the root, if the node with the best lower bound is always
developed first, the sequence of leaves explored by A∗ will produce a stream of
complete conformations, starting with the optimal conformation with minimum
energy (and thus maximal contribution to the partition function) and followed
by sub-optimal conformations sorted by increasing energy.

For optimization alone, it is amazing to see that the simple algorithm com-
bining DEE and A∗ (DEE/A∗) is only slightly dominated by 01-Linear program-
ming models solved using CPLEX [15] and outperforms very concise quadratic
programming formulations solved using CPLEX or BiqMac [16].

For counting, the DEE preprocessing may remove sub-optimal conformations
whose energy is sufficiently low to significantly contribute to the partition func-
tion. It is therefore weakened by using an energy threshold Ew > 0, replacing
the rhs zero in equation 2. Then DEE can only prune conformations with energy
at least Ew away from the optimum energy.

As A∗ produces conformations in increasing order of energy, the space of all
conformations ΛS is split in 3 subsets: a set P of conformations that have been
pruned by DEE(Ew), a set V of conformations already visited by A∗ and a set
U of yet unexplored conformations. This splits the partition function in 3 terms:
ZS = ZSP+ZSV +ZSU , each summed on the corresponding conformation space. The
value of the second term is known. It is possible to bound the value of the first
term: we compute a lower bound LbP = min`i pruned Lb(`i) on the energy of every
conformations pruned by DEE(Ew) and conclude that ZSP ≤ |P | · exp(−LbPkBT

).
Finally, if EA∗ is the energy of the last conformation produced by A∗, since the
sequence of conformation is decreasing, we have ZSU ≤ |V | · exp(−EA∗

kBT
). Thus:

ZS ≤ ZSV + |P | · e
−LbP
kBT + |V | · e

−EA∗
kBT

.

Hence, if EA∗ ≥ −kBT · [log(ZSV · ε
1+ε −|P | ·e

−LbP
kBT)− log(|U |)), we know that

ZSV is an ε-approximation of ZS and we can stop A∗ search, possibly pruning a

lot of conformations that do not contribute enough to ZS . However, it is also
possible that too many conformations have been pruned by DEE(Ew) and this
threshold is never reached. In this case, the A∗ must exhaust all conformations
and a sufficient (easy to determine) number of conformations in P must be
restored and the A∗ search redone. Remind that A∗ is a worst-case exponential
space and time algorithm. The dominance analysis of DEE is a double-edged
sword: it may prune a lot of conformations but if too many conformations are
pruned, a full search is required and another search needs to be done on a larger
set of conformations.

1.2 Cost Function Network and Local Consistency

Following our previous work on optimization for CPD presented in [17, 15],
we model the distribution of energies as a Cost Function Network (CFN) or
Weighted CSP. In a CFN (X,D,C, k), X is a finite set of variables, each vari-
able i ∈ X has a finite domain Di ∈ D, each cost function cY ∈ C is a function
from

∏
i∈Y Di to {0, . . . , k} and k is an upper bound defining an intolerable cost.

For a given assignment ` of X, the cost of ` is the sum of all cost functions (if it
is less than k) or k otherwise. A complete assignment is a solution of the CFN if
its cost is strictly less than k. Notice that all costs being non negative, c∅ ∈ C
is a lower bound on the cost of any assignment.

The energy distribution of S can be obviously modeled in a CFN with one
variable i ∈ X for every position, the domain of i is the set of rotamers ΛSi

and the cost functions include one zero-ary, unary and binary cost functions
representing respectively ES∅, E

S(`i) and ES(`i, `j).
If K∗ relies on DEE and A∗, our new algorithm combines soft local consisten-

cies (instead of DEE) and a Depth First Branch and Bound (DFBB) algorithm
(instead of A∗). The DFBB algorithm performs counting instead of minimization
and uses a dedicated dynamic pruning condition that guarantees to compute an
ε-approximation of ZS .

We quickly present the fundamental properties of soft local consistencies,
without details. The reader is invited to read [9] for a precise description of exist-
ing arc consistencies for CFN. Enforcing a given soft local consistency transforms
a CFN (X,D,C, k) into an equivalent CFN (X,D′, C ′, k) that satisfies the cor-
responding local consistency. By equivalence, we mean that the two CFNs have
the same set of solutions with the same cost. The fact that (X,D′, C ′, k) satisfies
the local consistency usually means that c∅ has increased (it cannot decrease
in any case), providing a stronger lower bound on the optimum and that do-
mains have been reduced (some values that cannot participate in a solution are
deleted). Naturally, the lower the k is, the stronger is the pruning.

2 DFBB+Arc Consistency to Compute Z with Pruning

Traditional DFBB algorithms for CFN maintain a given level of soft arc consis-
tency at each node (producing a non naive lower bound c∅ at each node) and

use the cost of the current best known solution as the current upper bound k.
This allows to prune efficiently as k decreases rapidly as search proceeds.

To transform this algorithm in a counting algorithm:

– each time a leaf ` with cost (energy) E` is encountered we contribute exp(−E`

kBT
)

to a running lower estimate ẐS of ZS (initially set to 0).
– each time we prune a node with partial assignment `′, we compute an upper

bound Ub(`′) on the contribution to the partition function of all the leaves
below the pruned node and contribute this upper bound to a running upper
bound ZS+ of the partition function over pruned conformations

– to decide when to prune, we enforce the invariant ẐS ≥ ẐS+ZS
+

1+ε . We prune

if and only if adding Ub(`′) to ZS+ does not break this invariant.

Theorem 1. The algorithm is correct: it provides a final estimate ẐS such that

ZS ≥ ẐS ≥ ZS

1+ε

Proof. Initially, ẐS = ZS+ = 0 and the invariant is satisfied. When the search
finishes, all conformations have either been explored or pruned and therefore

(ẐS + ZS+) ≥ ZS . Using the invariant, we conclude that ultimately ẐS ≥ ZS

1+ε .

By construction, ZS ≥ ẐS . ut
The remaining ingredient is the upper bound Ub(`). We know that all con-

formations below the current node have a cost (energy) larger than c∅, thus a
contribution to ZS smaller than exp(−c∅kBT

). Denoting by N(`) the product of
the domain sizes of all unassigned variables, we can conclude that Ub0(`) =
N(`) · exp(−c∅kBT

) is an upper bound on the contribution of all leaves below the
current node. Instead of only taking the size of the different domains, we can
easily tighten this bound by taking into account unary energies in the reformu-
lated model as Ub1(`) = exp(−c∅kBT

)×
∏

(
∑
a∈ΛSi

e−Ei(a)/kbT)) (Note that if you

assume that unary costs are equal to 1 , you will find the domain sizes).
This general schema is improved using on-the-fly variable elimination [10].

If a variable i has only few neighbors (typically 2 or 3) at the current node,
we eliminate this variable using a simple sum-product algorithm. We call the
resulting algorithms Z∗.

Z∗ can be easily improved by providing it with either a set of conformations
of low energies or with any available lower bound on the partition function
ZS . These can be used to strengthen the pruning condition in the beginning
of the search. Double counting of identical conformations can be easily avoided
using efficient direct comparison of conformations by discrimination trees or
hash tables or simply by using the maximum of this initial upper bound and the
running upper bound ẐS in the pruning condition. Our two first versions of Z∗

are called Z∗0 and Z∗1 (to leave possible improvement in the pruning algorithm).

3 Experimental Comparison

To compare K∗ to Z∗0/Z∗1 , we examined the binding affinity of different pro-
tein/ligand complexes. The 3D model of these molecular systems were derived

from crystallographic structures of the proteins in complex with their ligands,
deposited in the protein data bank (Table 1). Missing heavy atoms in crystal
structures as well as hydrogen atoms were added using the tleap module of the
Amber 14 software package [18]. The molecular all-atom ff14SB was used for
the proteins and the ligands while the gaff force field was used for the cofactor
AMP (present in one studied system, PDB: 1AMU). The molecular systems were
then subjected to 1000 steps of energy minimizations with the Sander module
of Amber 14. Next, we have selected a portion of the proteins including residues
at the interface between the protein and the ligand as well as a shell surrounding
residues with at least one atom within 8 to 12 Å (according to the molecular
system) of the interface.

PDB ID Ligand Variable res. Seq. Number

1AMU F (10,2/9) 1584

1TP5 KKETWV (12,2/3) 1121

1B74 Q (10,2/9) 1809

2Q2A R (13,2/12) 4716
Table 1. For each ID, we give the ligand, the number of variable residues (flexible,
mutations/mutable residues) and the number of sequences represented.

The residues at the interface protein/ligand and the ligand were considered
flexible and represented by rotamers from the Lovell’s penultimate library [19].
At most 2 of the flexible residues of the protein were allowed to simultaneously
mutate, while the remaining flexible residues were allowed to change their side-
chain conformation. In addition to the wild-type identity for the positions allowed
to mutate, a selective subset of amino-acid types (ranging from 7 to 19 amino-
acids) was allowed in the redesign. All energy matrices were generated using
Osprey 2.0 [11]. The energy function is the sum of the Amber electrostatic, van
der Waals and dihedral terms.

Floating point energies were translated, multiplied by a large constant K
and truncated to the nearest integer in the CFN. We implemented our algo-
rithm in our open source solver toulbar23. Our DFBB algorithm maintains Ex-
istential Directional Arc Consistency (EDAC) [20], on-the-fly elimination [10], a
value heuristics using the existential support and a variable ordering combining
weighted degree [21] and last conflict [22] heuristics.

To compare Z∗ as implemented in our C++ solver toulbar2 to the algo-
rithm K∗ implemented in Osprey 2.0 in Java, we set ε to 10−3 and toulbar2

and asked to estimate the affinity of each mutated proteins sequence with the
substrate. For Osprey 2.0, we used the options doMinimize = false, gamma =

0.0. This last option guarantees that all mutations will be evaluated. The default
values initEw = 6.0, pruningE = 100.0, stericE = 30.0 were also used. For

3 mulcyber.toulouse.inra.fr/projects/toulbar2/

toulbar2 0.9.7, we used options -logz -zub=0 and -logz -zub=1 that selects
the Z∗0 and Z∗1 algorithm respectively and the upper bounding Ub0,1(`) described
before and turns DEE processing off. For the 1AMU model, this represents a
total of around 3,168 counting problems, each with different energy landscapes.
The proxy to the affinity defined by the ratio of the partition functions is only
approximated by the two methods, and these approximations may differ and
rank sequences with close values differently. We compared the rank of the first
40 sequences and the two sets were identical and identically ordered.

For the 1AMU model, K∗ explored 6,451,997 nodes in 76,654 seconds (CPU
user time) while toulbar2 explored 84,993 nodes in 30 seconds (CPU user time)
for the same value of ε. So, Z∗0 is around 2,500 times faster and offers stronger
pruning, moreover Z∗1 take 23% less time and explored 30% less nodes than our
first version. While the difference in efficiency between C++ and Java may con-
tribute to this difference, it can only explain a small part of this ratio. For the
other models, K∗ took over the time limit (250 hours CPU user time) that we
set and it is therefore impossible to compare precisely. Moreover the improve-
ment provide by Ub1(`) is approximatively twice better in consuming time and
explored nodes (Table 2). We also studied the influence of ε on the computing

K∗ Z∗0 Z∗1
PDB ID nodes time nodes time nodes time

1AMU 6.45 1278 0.085 0.5 −23% −30%
1TP5 ∞ ∞ 3.19 31 −51% −47%
1B74 ∞ ∞ 5.64 35 −41% −35%

2Q2A ∞ ∞ 39.9 596 −56% −43%

Table 2. For each system, we give the number of nodes (×106) and user cpu-time
in minutes. We used ε = 10−3. ∞ means that the computational time is over 250h
cpu-time

time and pruning. Even if the influence is not really drastic, as expected the
higher ε is, the worst the approximation Ẑ is. Notice that a value of ε = 1
means that our estimate is guaranteed to be only withing a factor 2 of the true
value of ZS .

4 Conclusion

In statistical physics in general and specifically in Computational Protein De-
sign, computing or estimating the partition function is a central but difficult
problem. The computation of the simple pure conformational partition function
of an amino-acid based system with fixed backbone and flexible side-chains rep-
resented as rotamer sets with a pairwise decomposed energy already defines a
#P -complete problem.

In general, this problem has a very dense graph which makes exact graph-
structure based approaches inadequate. It also has a very sharp energy landscape

ε = 1 ε = 10−3 ε = 10−6

PDB ID nodes time nodes time nodes time

1AMU 6.45 27.123 84,993 30.209 91,046 30.741

1TP5 2,290,910 1,254.456 3,190,349 1,845.352 3,278,235 2,138.06

1B74 3,725,217 3,072.183 5,635,612 5,113.682 6,464,729 5,682.806

2Q2A 27,003,446 24,012.182 39,939,197 35,383.914 56,956,558 50,752.495

Table 3. For each system, and for different values of ε we give the number of nodes
and user cpu-time in seconds. The value ε = 0 was also tried for 1AMU. In this case,
steric clashes are the only possible cause of pruning (infinite energy) and more than
340,000 nodes were explored in 72 seconds. In tight interfaces, this is an important
source of pruning.

that allows for efficient optimization but does not facilitate a stable probabilistic
(Monte Carlo-based) estimation of the partition function. Such estimates also
offer no deterministic guarantee on the quality of the estimation.

The K∗ approach developed for CPD and our new Z∗0 algorithm instead ex-
ploits the fact that in some cases, a very small fraction of the conformational
space may contribute enough to essentially define the partition function. In our
knowledge, our algorithm is the first deterministic algorithm for weighted count-
ing that exploits soft local consistency reformulation based lower bounds for
counting with deterministic guarantees. Naturally, these results are preliminary.
Several directions can be pursued to reinforce these results:

– consider larger molecular systems for comparison. The combinatorial advan-
tage of Z∗0 compared to K∗ that results from the stronger lower bound of
local consistencies, the absence of DEE, together with the space effectiveness
of DFBB compared to A∗ should lead to even stronger speedups.

– shift to higher resolution rotamer libraries. The penultimate library has a
lower resolution than alternative libraries such as [23] or [24]. In Osprey, an-
other approach using continuous pre and post minimization is used instead.
We could then compare the two approaches in terms of consistency of the
predicted affinity ranking.

– compare Z∗0 to exact counting algorithms such as Cachet [25], Sentential
Decision Diagrams [26] both on CPD problems (with sharp changes in con-
tributions to ZS) and other usual probabilistic systems such as classical
instances of Markov Random Fields and Bayesian Nets.

– it is known that our lower bounds have corresponding lower bounding mech-
anisms in Weighted Satisfiability [27]. They could therefore be used to im-
prove Cachet or SDD solvers for approximate computations with determin-
istic guarantees.

– improve Z∗0 with stronger bounds and alternative search strategies that fa-
vors the early discovery of low energy conformations and possibly exploits
the interaction graph structure through a tree-decomposition.

These preliminary results also show the interest of using these bounds in-
stead of DEE dominance analysis for pruning the conformational space. Local

consistency provides good lower bounds and its pruning can be easily controlled
to avoid pruning sub-optimal solutions that can participate significantly to the
partition function. This is a major advantage compared to DEE.

References

1. Viricel, C., Simoncini, D., Allouche, D., de Givry, S., Barbe, S., Schiex, T.: Ap-
proximate counting with deterministic guarantees for affinity computation. In:
Modelling, Computation and Optimization in Information Systems and Manage-
ment Sciences. Springer (2015) 165–176

2. Fersht, A.: Structure and mechanism in protein science: a guide to enzyme catalysis
and protein folding. WH. Freemean and Co., New York (1999)

3. Peisajovich, S.G., Tawfik, D.S.: Protein engineers turned evolutionists. Nature
methods 4(12) (December 2007) 991–4

4. Pabo, C.: Molecular technology. Designing proteins and peptides. Nature
301(5897) (January 1983) 200

5. Miklos, A.E., Kluwe, C., Der, B.S., Pai, S., Sircar, A., Hughes, R.A., Berrondo, M.,
Xu, J., Codrea, V., Buckley, P.E., et al.: Structure-based design of supercharged,
highly thermoresistant antibodies. Chemistry & biology 19(4) (2012) 449–455

6. Siegel, J.B., Zanghellini, A., Lovick, H.M., Kiss, G., Lambert, A.R., St Clair, J.L.,
Gallaher, J.L., Hilvert, D., Gelb, M.H., Stoddard, B.L., Houk, K.N., Michael, F.E.,
Baker, D.: Computational design of an enzyme catalyst for a stereoselective bi-
molecular Diels-Alder reaction. Science (New York, N.Y.) 329(5989) (July 2010)
309–13

7. Georgiev, I., Lilien, R.H., Donald, B.R.: The minimized dead-end elimination
criterion and its application to protein redesign in a hybrid scoring and search
algorithm for computing partition functions over molecular ensembles. Journal of
computational chemistry 29(10) (July 2008) 1527–42

8. Rossi, F., van Beek, P., Walsh, T., eds.: Handbook of Constraint Programming.
Elsevier (2006)

9. Cooper, M., de Givry, S., Sanchez, M., Schiex, T., Zytnicki, M., Werner, T.: Soft
arc consistency revisited. Artificial Intelligence 174 (2010) 449–478

10. Larrosa, J.: Boosting search with variable elimination. In: Principles and Prac-
tice of Constraint Programming - CP 2000. Volume 1894 of LNCS., Singapore
(September 2000) 291–305

11. Gainza, P., Roberts, K.E., Georgiev, I., Lilien, R.H., Keedy, D.A., Chen, C.Y.,
Reza, F., Anderson, A.C., Richardson, D.C., Richardson, J.S., et al.: Osprey: Pro-
tein design with ensembles, flexibility, and provable algorithms. Methods Enzymol
(2012)

12. Desmet, J., De Maeyer, M., Hazes, B., Lasters, I.: The dead-end elimination the-
orem and its use in protein side-chain positioning. Nature 356(6369) (April 1992)
539–42

13. Pierce, N.A., Winfree, E.: Protein design is NP-hard. Protein engineering 15(10)
(October 2002) 779–82

14. Rubinstein, R.Y., Ridder, A., Vaisman, R.: Fast sequential Monte Carlo methods
for counting and optimization. John Wiley & Sons (2013)

15. Allouche, D., André, I., Barbe, S., Davies, J., de Givry, S., Katsirelos, G.,
O’Sullivan, B., Prestwich, S., Schiex, T., Traoré, S.: Computational protein design
as an optimization problem. Artificial Intelligence 212 (2014) 59–79

16. Rendl, F., Rinaldi, G., Wiegele, A.: Solving Max-Cut to optimality by intersecting
semidefinite and polyhedral relaxations. Math. Programming 121(2) (2010) 307

17. Traoré, S., Allouche, D., André, I., de Givry, S., Katsirelos, G., Schiex, T., Barbe,
S.: A new framework for computational protein design through cost function net-
work optimization. Bioinformatics 29(17) (2013) 2129–2136

18. Case, D., Babin, V., Berryman, J., Betz, R., Cai, Q., Cerutti, D., Cheatham Iii,
T., Darden, T., Duke, R., Gohlke, H., et al.: Amber 14. (2014)

19. Lovell, S.C., Word, J.M., Richardson, J.S., Richardson, D.C.: The penultimate
rotamer library. Proteins 40(3) (August 2000) 389–408

20. Larrosa, J., de Givry, S., Heras, F., Zytnicki, M.: Existential arc consistency:
getting closer to full arc consistency in weighted CSPs. In: Proc. of the 19th

IJCAI, Edinburgh, Scotland (August 2005) 84–89
21. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by

weighting constraints. In: ECAI. Volume 16. (2004) 146
22. Lecoutre, C., Säıs, L., Tabary, S., Vidal, V.: Reasoning from last conflict(s) in

constraint programming. Artificial Intelligence 173 (2009) 1592,1614
23. Shapovalov, M.V., Dunbrack, R.L.: A smoothed backbone-dependent rotamer li-

brary for proteins derived from adaptive kernel density estimates and regressions.
Structure 19(6) (2011) 844–858

24. Subramaniam, S., Senes, A.: Backbone dependency further improves side chain
prediction efficiency in the energy-based conformer library (bebl). Proteins: Struc-
ture, Function, and Bioinformatics 82(11) (2014) 3177–3187

25. Sang, T., Bacchus, F., Beame, P., Kautz, H.A., Pitassi, T.: Combining component
caching and clause learning for effective model counting. SAT 4 (2004) 7th

26. Choi, A., Kisa, D., Darwiche, A.: Compiling probabilistic graphical models us-
ing sentential decision diagrams. In: Symbolic and Quantitative Approaches to
Reasoning with Uncertainty. Springer (2013) 121–132

27. Larrosa, J., Heras, F.: Resolution in max-sat and its relation to local consistency
in weighted csps. In: IJCAI. (2005) 193–198

