
Working with biological databases

Nicos Angelopoulos∗ and Georgios Giamas

Department of Surgery and Cancer, Division of Cancer, Imperial
College London, Hammersmith Hospital Campus, Du Cane Road,

London W12 ONN, UK.

July 25, 2015

Abstract

It has been argued before that Prolog is a powerful platform for re-
search and code development in bioinformatics and computational biology.
This position has been based on both the intrinsic strengths of Prolog and
recent advances in its technologies. Here we strengthen the case for the
deployment and penetration of Prolog into bioinformatics, by introducing
bio db, a comprehensive and extensible system for working with biological
data. We focus on databases that translate between biological products
and product-to-product interactions, the latter of which can be visualised
as graphs. This library allows easy access to high quality data in two
formats: as Prolog fact files and as SQLite databases. On-demand down-
loading of prepacked data files in these two formats is supported in all
operating system architectures as well as reconstruction from latest data
files from the curated databases. The methods used to deliver the data
are transparent to the user while they present the data uniformly in the
familiar format of Prolog facts.

1 Introduction

Prolog’s traditional playground is that of knowledge representation and AI ap-
plications on crisp, logical inference and search. In addition to being a research
tool in these areas, Prolog implementations have been developing to full fledged
general purpose programming environments. These developments have started
shaping a role for logic programming in a variety of new areas.

Bioinformatics has been the meeting point of a number of influences since
its emergence as a field of study. Being on the intersection of biology, statis-
tics and computing, it has meant that a multitude of languages, systems and

∗Email: nicos.agnelopoulos@imperial.ac.uk
please note, an extended version of this paper is presented in ICLP as technical communication

1

Database Abbv. Description
HGNC hgnc HUGO Gene Nomenclature Committee
NCBI/entrez entz Nat. Center for Biot. Inf.
Uniprot unip Universal Protein Resource
GO gont Gene Ontology
Interactions database
String string protein-protein interactions

Table 1: Supported biological databases and data sources.

paradigms has been developed and utilised for bioinformatics research. One of
the strongest contestants in this field comes from the statistics community in the
shape of the R (R Core Team, 2015) language and its Bioconductor (Gentleman
et al., 2004) bioinformatics suite. The strength of these statistical tools is on
providing a versatile platform that can incorporate a menagerie of paradigms
and programming styles.

Using an interface to R (Angelopoulos et al., 2013) would be one way to
access biological databases via packages such as org.Hs.eg.db (Carlson, 2014).
However, this approach would increase reliance on R and create a further layer
of complications. Here, we take a logical approach to incorporating biological
knowledge. With the advances in modern Prolog systems in database integra-
tion (Canisius et al., 2013; Wielemaker, 2014) and indexing technologies (San-
tos Costa and Vaz, 2013; Morales and Hermenegildo, 2014) working with big
data within Prolog is set to become an important application area for Prolog.

In this paper we describe the capabilities and design structure of an ex-
tensible library for working with and managing biological databases. Distinc-
tive features of the package include: on-demand downloading of prepacked
databases, and single entry interface for accessing databases in 2 underlying
serving mechanisms. Our library focuses on Homo sapiens data and uses high-
quality databases.

2 A logical approach to big biological datasets

Data from biological experiments and data codifying biological knowledge have
seen a sharp increase in the last decades. Here we will concentrate on two
main categories of databases. First, we consider maps of biological products
and nomenclatures. Examples include mapping gene synonyms to a standard
name and mapping proteins to genes, both of which are many-to-one relations,
whereas many-to-many maps can be used to define membership to multiple sets.
Maps are conveniently and efficiently implemented as Prolog facts of arity 2.

A summary of the databases supported are shown in Table 1. HGNC (Gray
et al., 2015), is our primary gene identifying data source. Each gene is assigned
a unique incremental integer identifier and each current identifier is mapped to
a unique symbol which is the short name for that gene. Example of symbols
are: LMTK3, EGFR and BRC1. We will use hgnc to refer to both the database

2

●

●

●

●

●

●

●

●

●

●

ENSGene

ENSProtein

ENTreZ
GONTerm

GONaMe

HGNC

PREVious symbol

SYMBol

SYNOnym

UNIProtein

HGNC
Ensembl
NCBI/Entrez
UNIPROT
GO

Figure 1: Mapping predicates connect vertices of the displayed graph. The leg-
end shows the database from which the field for each argument in the predicates
is drawn from.

and the unique integer identifier field of the database. Symbols are shortened
to symb. As can be seen in Fig. 1, the HGNC database plays a central role in
bio db. Its primary identifier (e.g 19295) connects to protein and gene resources,
and its Symbol (short name, e.g. LTMK3) connects to gene ontology terms and
other naming conventions.

The National Center for Biotechnology Information (NCBI) makes available
a large number of datasets (NCBI Resource Coordinators, 2013). Here we only
incorporate their unique gene identifier, which is often referred to as gene id

and was for many year the main way to uniquely refer to genes (here referred
to as entz.). Uniprot (The UniProt Consortium, 2015) is a curated and well
established database of proteins and related information. The relation between
proteins and genes is a many to one correspondence. Gene ontology (GO) (The
Gene Ontology Consortium, 2000) provides a controlled vocabulary to describe
biological knowledge. The basic representation unit in GO are its GO terms.
They are connected in a web of referential relations. Each term, in addition
to its relative position to other terms, contains a number of genes which are
involved in the process characterised by the term. Here we concentrate on

3

0

20000

40000

60000

ensg ensp entz gont hgnc prev symb syno unip
Field

Po
pu

la
tio

n

Database

ense

gont

hgnc

ncbi

unip

0e+00

1e+06

2e+06

3e+06

4e+06

5e+06

gene protein
Edge

P
o

p
u

la
ti
o

n

Database

string

Figure 2: Populations of the main fields in the supported databases. Each bar
corresponds to a field in one of the databases. Colours correspond to databases
from which the field was drawn from. In the LHS are the fields associated with
maps and in the RHS are the String DB edges.

this membership, which defines a many to many relation. Each term contains a
number of genes and each gene potentially belongs to a number of terms. String
(Szklarczyk et al., 2015) is a comprehensive protein-protein interaction database
that incorporates a large number of interactions present in one of a large number
of species. Here we are only concerned with the 4850628 interactions of human
proteins (Fig. 2 1936162 interactions amongst genes). The database provides an
overall integer score in (0, 1000). The closer to 1000 this score is, the stronger
the likelihood that the link represents a real physical interaction.

3 Data management

The library presents those facts to the programmer as a unifying level of ab-
straction. Beneath this level there are two mechanisms via which the data are
delivered to the predicates: (a) Prolog fact files and (b) SQLite databases.

3.1 Predicate naming

An example of a map predicate is

map_hgnc_hgnc_symb(Hgnc, Symb).

The predicate translates between HGNC identifiers and HGNC symbols. The
predicate name consists of 4 components, the first of which determines the type
of data, a map in this case, the second, hgnc, corresponds to the database and
the third, also hgnc, identifies the first argument of the map to be the unique
identifier field for that database (here a positive integer starting at 1 and with no

4

gaps. The last part of the predicate name corresponds to the second argument,
which here is the unique gene Symbol. In the current version of bio db, all
tokens in map predicate names are 4 characters long. The abbreviations for the
database component are shown in the second column of Table 1 whereas the
abbreviations for the database fields are the capitalised parts of vertice’s names
of Fig. 1. The following query maps an HGNC identifier to a Symbol

?- map_hgnc_hgnc_symb(19295, Symb).

Symb = ’LMTK3’.

3.2 Data serving methods

There are two mechanisms via which the library’s data predicates can be stored
and served. One is as plain Prolog fact files, and the other is via SQLite
databases as implement in the proSQLite Prolog library (Canisius et al., 2013).
The former requires in-memory loading, thus requiring more memory and load-
ing time. The main benefit of Prolog facts, is that there are extremely fast
particularly when requests for data instantiate the first argument of their call.
Memory itself is in our experience not a particular limitation as computer mem-
ory is readily available in bioinformatics settings and SWI-Prolog along with
most modern Prolog systems are well tuned to dealing with such data. The time
taken when loading everything to memory is a more severe limitation particu-
larly in development settings. It might thus be desirable to use SQLite during
development and testing and Prolog for when big time consuming searches are
required. Switching between the mechanisms for serving the files is done via a
simple call to a predicate,

bio_db_interface(?Interface).

All data predicates loaded after such a call will be following the interface method
dictated by Interface. The following example shows a simple interaction with
debugging statements on.

?- debug(bio_db).

?- bio_db_interface(Iface).

Iface = prolog.

?- map_hgnc_prev_symb(Prev, Symb).

% Loading prolog db: .../map_hgnc_prev_symb.pl

Prev = ’A1BG-AS’,

Symb = ’A1BG-AS1’;

Prev = ’A1BGAS’,

Symb = ’A1BG-AS1’...

3.3 Downloading datasets

The library comes with placeholder code for each supported database table. On
first call the relevant datafile is downloaded from the web-server and consulted

5

on-the-fly after the place-holding code is removed. In each new interactive
invocation, hot-swapping and then consulting of the relevant and data file will
make the data available as facts. The facts are served transparently to the
user by the two different technologies detailed above. The downloading of non-
installed datasets occurs automatically and transparently to the user. This is
triggered by a call to the corresponding data predicate and the actual call is
served within the same interaction as demonstrated below

?- map_hgnc_symb_hgnc(’LMTK3’, Hgnc).

% prolog DB:table hgnc:map_hgnc_symb_hgnc/2 is not installed,

do you want to download it (Y/n) ?

% Trying to get: url_file(...)

% Loading prolog db: .../hgnc/map_hgnc_symb_hgnc.pl

Hgnc = 19295.

The data files are stored in a directory organised into maps and graphs
reflecting the two main type of information supported. Within these two subdi-
rectories data are organised as per database of origin. The root of this filestore
organisation defaults to the data directory of the library or can be set via an en-
vironment variable or by using the set prolog flag/2 predicate. The default
location for storing data files is at the level of an SWI-Prolog pack located at
pack(bio db repo). Each dataset contains a set of house keeping information
that shows, among other things, the download and build dates.

map_hgnc_hgnc_symb_info(date, date(2015, 4, 28)).

map_hgnc_hgnc_symb_info(map_type, map_type(1, 1)).

map_hgnc_hgnc_symb_info(unique_lengths, c(43592, 43592, 43592)).

map_hgnc_hgnc_symb_info(header, row(’HGNC ID’, ’Approved Symbol’)

The Prolog scripts used to download and convert the data are given in the
library source code. The overall work-flow normally is as follows: (a) download
a remote file to a local date-stamped file, (b) read the downloaded file, (c)
produce bio db outputs, and (d) move or link files from downloads directory to
loadables directory.

4 Examples

Here we will look into the GO terms of the LMTK3 tyrosine kinase (Giamas
et al., 2011). The following code shows how to produce the GO terms, their
names and their populations, which are shown in Table 2.

lmtk3_go :-

map_gont_symb_gont(’LMTK3’, Gont),

findall(Symb, map_gont_gont_symb(Gont,Symb), Symbs),

map_gont_gont_gonm(Gont, Gonm),

sort(Symbs, Oymbs), length(Oymbs, Len),

6

GO term GO name population
GO:0003674 molecular function 764
GO:0004674 protein serine/threonine kinase activity 340
GO:0004713 protein tyrosine kinase activity 89
GO:0005524 ATP binding 1488
GO:0005575 cellular component 497
GO:0006468 protein phosphorylation 557
GO:0010923 negative regulation of phosphatase activity 53
GO:0016021 integral component of membrane 200
GO:0018108 peptidyl-tyrosine phosphorylation 131

Table 2: Gene ontology terms and associated GO term names for LMTK3.
Third column shows the total number of genes in the GO term

write(Gont-Gonm-Len), nl, fail.

lmtk3_go.

As a second example we combine GO terms with String interactions. For
a given GO term we can construct a weighted graph reflecting the interactions
from the String database. This is build by first mapping an input GO term
to the list of symbols it contains and then collecting all edges amongst these
symbols that have a weight that exceeds that of a provided limit. The graph in
Fig. 3 shows such a graph for term GO:0010332 for a minimum weight of 500.

go_term_graph(GoTerm,Min,Graph):-

findall(Symb, map_gont_gont_symb(Gont,Symb), Symbs),

findall(Symb1-Symb2:W, (member(Symb1,Symbs),

member(Symb2,Symbs),

edge_string_hs_symb(Symb1,Symb2,W),

Lim < W),

Graph).

?- go_term_graph(’GO:0010332’, 500, W).

The software described in this paper is available as an easy to install library
for the SWI-Prolog system. Installation can be done within the system with a
single call?- pack_install(bio_db).

This will only install the library source code but not the datasets. These will
be downloaded transparently and on demand, the first call to a predicate. Al-
ternatively, the core databases can be installed with pack bio_db_repo.

5 Conclusions

We have argued that Prolog is a powerful language for building bioinformatics
pipelines and that its role can be of crucial importance as biological data is

7

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

APOBEC1

BAK1

BAX

BCL2
BRCA2

CCL2

CCL7

CDS1

CHEK2

CXCL10

CYP11A1

DCUN1D3

ERCC6

FANCD2

GATA3

GPX1

LIG4

MEN1

MYC

PML

PRKAA1

PRKDC

PTPRC

SCG2

SOD2

TIGAR
TP53

TP63

TP73

TRIM13

XRCC2

XRCC4

Figure 3: Gene ontology term, GO:0010332: response to gamma radiation.
Edges are provided by the String database. Width and darkness of edge colour
signify higher belief in the interaction being a real protein-protein interaction

increasingly needed to be viewed as knowledge both in the contexts of analysis
and that of statistical inference or machine learning. We presented a library
that is easily installed from within SWI-Prolog (Wielemaker et al., 2008). This
library presents a convenient and intuitive way for working with biological data.
All available data have been sourced from high quality and wherever possible
curated databases. The emphasis of our approach is to provide easy of use,
via automatically downloading datasets and using code hot-swapping, as well
as flexibility by de-coupling data from code and allowing transparent ways of
only downloading the necessary datasets. Current work on the library includes
extending to other databases and additional database interfaces such as ODBC.
Prolog is well suited for research and code development in the areas of bioinfor-
matics and computational biology. The code presented here, can play a strong
role in promoting Prolog in these areas.

References

N. Angelopoulos, V. S. Costa, J. Azevedo, J. Wielemaker, R. Camacho, and
L. Wessels. Integrative functional statistics in logic programming. In Proc.

8

of PADL, volume 7752 of LNCS, pages 190–205, Jan. 2013.

Sander Canisius, Nicos Angelopoulos, and Lodewyk Wessels. ProSQLite: Prolog
file based databases via an SQLite interface. In Proc. of Practical Aspects of
Declarative Languages, volume 7752 of LNCS, pages 222–227, Jan. 2013.

Marc Carlson. org.Hs.eg.db: Genome wide annotation for Human, 2014. R
package version 2.14.0.

Robert C. Gentleman, Vincent J. Carey, Douglas M. Bates, and others. Bio-
conductor: Open software development for computational biology and bioin-
formatics. Genome Biology, 5:R80, 2004.

G. Giamas, A. Filipovic, J. Jacob, W. Messier, H. Zhang, D. Yang, W. Zhang,
B. A. Shifa, A. Photiou, C. Tralau-Stewart, L. Castellano, A. R. Green, R. C.
Coombes, I. O. Ellis, S. Ali, H-J. Lenz, and J. Stebbing. Kinome screening
for regulators of the estrogen receptor identifies LMTK3 as a new therapeutic
target in breast cancer. Nat Med, 17:715–719, 6 2011.

K.A. Gray, B. Yates, R.L. Seal, M.W. Wright, and E.A. Bruford. Gene-
names.org: the HGNC resources in 2015. Nucleic Acids Res, 2015.

J.F. Morales and M. Hermenegildo. Towards pre-indexed terms. In Proceedings
of CICLPOPS, pages 79–92, 2014.

NCBI Resource Coordinators. Database resources of the national center for
biotechnology information. Nucleic Acids Research, 41:D8–D20, 2013.

R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, 2015.

Vı́tor Santos Costa and David Vaz. BigYAP: Exo-compilation meets UDI. The-
ory and Practice of Logic Programming, 13(4-5):799–813, 2013.

D. Szklarczyk, A. Franceschini, S. Wyder, K. Forslund, D. Heller, J. Huerta-
Cepas, M. Simonovic, A. Roth, A. Santos, K. P. Tsafou, M. Kuhn, P. Bork,
L. J. Jensen, and C. von Mering. STRING v10: protein-protein interaction
networks, integrated over the tree of life. Nucleic Acids Research, 43(D1):
D447–D452, 2015.

The Gene Ontology Consortium. Gene ontology: tool for the unification of
biology. Nat. Genet., 25(1):25–9, 2000. URL http://geneontology.org.

The UniProt Consortium. Uniprot: a hub for protein information. Nucleic
Acids Res., pages D204–D212, 2015.

Jan Wielemaker. SWI-Prolog ODBC interface, 2014. URL http://www.

swi-prolog.org/pldoc/package/odbc.html.

Jan Wielemaker, Zhisheng Huang, and Lourens van der Meij. SWI-Prolog and
the web. TPLP, 8(3):363–392, 2008.

9

