
Proceedings of WCB13
Workshop on

Constraint Based Methods for Bioinformatics

Alessandro Dal Palù and Agostino Dovier

September 16, 2013, Uppsala (Sweden)

Program Committee

– Nicos Angelopoulos, Netherlands Cancer Institute, Amsterdam, The Netherlands

– Rolf Backofen, Institut für Informatik, Albert-Ludwigs-Universität, Freiburg, Ger-

many

– Pedro Barahona, CENTRIA, Univ. Nova de Lisbona, Portugal

– Alexander Bockmayr, Freie Universität Berlin, Germany

– Alessandro Dal Palù (co-chair), Dipartimento di Matematica, Univ. of Parma, Italy

– Simon De Givry, Centre de recherches de Toulouse, Station de biométrie et d’intelligence

artificielle, INRA, France

– Agostino Dovier (co-chair), DIMI, Università di Udine, Italy

– François Fages, INRIA Paris-Rocquencourt, France

– Inês Lynce, Departamento de Engenharia Informática, INESC-ID Lisboa, Portugal

– Enrico Pontelli, Dept. of Computer Science, New Mexico State University, USA

– Thomas Schiex, Dept. de Mathématique et Informatique appliquées, INRA Toulouse,

France

– Sven Thiele, INRIA Rennes, France.

– Pascal van Hentenryck, Optimization Research Group, NICTA, Australia

– Sebastian Will, Computer Science Department, Leipzig University, Germany

External referees

– Sabine Peres, Laboratoire de Recherche en Informatique, Université Paris-Sud,

France

– Steven Gay, INRIA Paris-Rocquencourt, France

Preface

The Workshop on Constraint Based Methods for Bioinformatics has reached its 9th

consecutive edition. As for its first edition (Sitges 2005) as well as for the two ancestor

workshops in 1997 and 1999, this year’s edition is hosted as satellite workshop of the

International Conference on Constraint Programming, which is perhaps the most natural

location for this workshop. Yet in 2005 Bioinformatics was a hot topic and it is still a

very active area nowadays. Various problems, both challenging and of high relevance,

can be formalized and solved by declarative methods. Moreover, a notable trend that

characterized these latest years is that the intrinsic complexity of these problems favors

the hybridization of several techniques (Constraint Programming, Logic Programming,

Integer Linear Programming, SAT, Local Search, Tabling, and so on) in order to achieve

more accurate results in reasonable time.

As in previous editions, the accepted papers range on a rich set of interesting prob-

lems. In particular, Fioretto and Pontelli study how to infer additional knowledge in the

domain of Gene regulatory networks by modeling data integration by means of Con-

straint Programming; Kishimoto and Marinescu deal on haplotyping problems, namely

Genetic linkage analysis based constraint networks. Soliman, Fages and Radulescu use

Constraint Programming for implementing equilibrium conditions of perturbation the-

ory for the reduction of biochemical models. Fages and Soliman, with Gay and Santini

deal with the subgraph epimorphism problem in particular pointing out the application

of the results in model reduction. Elsen, de Givry, Katsirelos, and Shumbusho model

and compare different solvers on the problem of genomic selection design. Lesaint,

Mehta, and O’Sullivan deal with the problem of finding soft patterns in already classi-

fied protein families. Mann and Thiel face the problem of molecule representation, in

particular revisiting the Kelulè model, by means of constraint programming. David and

Bockmayr develop new techniques for the analysis of genome-scale metabolic networks

by means of ILP. Bau, Waldmann, and Will deal with the RNA secondary structure de-

sign problem using SAT techniques.

We are particularly grateful to Peter Stuckey who accepted to give an invited talk

on a topic that is very close to editor’s personal research interest, namely What is the

minimal dictionary of protein substructures of which all known proteins are made? The

talk summarizes a recent work by Peter in collaboration with Arun Konagurthu, Arthur

M. Lesk, David Abramson, and Lloyd Allison.

A particular thank to the Association for Constraint Programming that accepted

to host our workshop and in particular to the Workshop (and Tutorial) Chair Laurent

Michel and to the CP Conference Chairs Mats Carlsson, Pierre Flener, and Justin Pear-

son, and, again to our invited speaker Peter Stuckey.

Alessandro Dal Palù and Agostino Dovier

i

ii

Table of Contents

Constraint Programming in Community-based Gene Regulatory Network
Inference . 1
Ferdinando Fioretto and Enrico Pontelli

Recursive Best-First AND/OR Search with Overestimation for Genetic
Linkage Analysis . 17
Akihiro Kishimoto, Radu Marinescu

A Constraint Solving Approach to Tropical Equilibration and Model Reduction . 27
Sylvain Soliman, François Fages, Ovidiu Radulescu

Optimizing the reference population in a genomic selection design 37
Jean-Michel Elsen, Simon de Givry, George Katsirelos, Felicien Shumbusho

Soft Pattern Discovery in Pre-Classified Protein Families through Constraint
Optimization . 47
David Lesaint, Deepak Mehta, Barry O’Sullivan

Kekulé structure enumeration yields unique SMILES . 57
Martin Mann and Bernhard Thiel

Solving Subgraph Epimorphism Problems using CLP and SAT 67
Steven Gay, François Fages, Francesco Santini, Sylvain Soliman

Constrained Flux Coupling Analysis . 75
Laszlo David, Alexander Bockmayr

RNA Design by Program Inversion via SAT Solving . 85
Alexander Bau, Johannes Waldmann, Sebastian Will

Constraint Programming in Community-based
Gene Regulatory Network Inference

Ferdinando Fioretto1,2 and Enrico Pontelli1

1 Dept. Computer Science, New Mexico State University
2 Depts. Math. & Computer Science, University of Udine

ffiorett,epontell@cs.nmsu.edu

Abstract. Gene Regulatory Network (GRN) inference is a major ob-
jective of Systems Biology. The complexity of biological systems and the
lack of adequate data have posed many challenges to the inference prob-
lem. Community networks integrate predictions from individual methods
in a “meta predictor”, in order to compose the advantages of differ-
ent methods and soften individual limitations. This paper proposes a
novel methodology to integrate prediction ensembles using Constraint
Programming, a declarative modeling paradigm, which allows the for-
mulation of dependencies among components of the problem, enabling
the integration of diverse forms of knowledge. The paper experimentally
shows the potential of this method: the addition of biological constraints
can offer improvements in the prediction accuracy.

1 Introduction

Within a cellular context, genes interact to orchestrate a multitude of important
tasks. These interactions are regulated by different gene products, as proteins
called Transcription Factors (TFs) and RNA, and they constitute an intricate
machinery of regulation referred to as Gene Regulatory Networks (GRNs). In
turn GRN inference describes the process of inferring the topology of a partic-
ular GRN. GRN inference from high-throughput data is of central importance
in computational system biology. Its use is crucial in understanding important
genetic diseases, such as cancer, and to devise effective medical interventions.

The availability of a wealth of genomic data has encouraged the development
of diverse methods for GRN inference. However, data sets are quite heteroge-
neous in nature, containing information which is limited and difficult to ana-
lyze [24]. This reverberates on performance of GRN inference methods, which
tend to be biased toward the type of data and experiments. For instance, meth-
ods based on linear models perform poorly on highly non-linear data, such as
the one produced in presence of severe perturbations like gene knock-outs [11].
To alleviate these difficulties several alternatives have been proposed, such as
integrating heterogeneous data into the inference model [20], or integrating a
collection of predictions across different inference methods in Community Net-
works (CNs) [13, 14]. The former is a promising research direction but it has to
face several challenges which span from how to relate different types of data to

1

data sets normalization processes. The latter has the advantage of promoting the
benefits of individual methods while smoothing out their drawbacks. Moreover
it does not exclude the use of the former solution within the initial prediction
set. The CN integration process poses many challenges, raising questions like:
(i) how to take into account strengths and weaknesses of individual inference
methods—e.g., the difficulty for Mutual Information (MI) or correlation based
methods to discriminate TFs; and (ii) how to leverage additional information
which cannot be taken into account by the individual methods.

In this paper, we propose a novel methodology based on Constraint Pro-
gramming (CP) to integrate community predictions. CP is a declarative problem
solving paradigm, where logical rules are used to model problem properties and
to guide the construction of solutions. CP offers a natural environment where
heterogeneous information can be actively handled. The use of constraint expres-
sions allows the incremental refinements of a model. This is particularly suitable
to take care of biological knowledge integration, when such knowledge cannot be
directly handled by individual prediction methods.

We test our method on a set of 110 benchmarks proposed by the DREAM3 [14]
and DREAM4 [17] challenges. We show increases in prediction accuracy with re-
spect to a CN prediction based on the Borda count election method [13].

2 Related Work

A wide variety of GRN inference methods from expression data have been pro-
posed [20]. These include: (1) Discrete models based on Boolean networks and
Bayesian networks [11]; (2) Regression methods like TIGRESS—which imposes
a regression problem to each gene; (3) Methods based on mutual information
(MI) theory, such as ARACNE [15] statistical likelihood of MI values. Ensemble
learning has been explored for example by GENIE3, which uses a Random For-
est approach [10]. Meta approaches have also been explored, such as Inferelator,
based on re-sampling combining median-corrected z-scores(MCZ), time-lagged
CLR (tlCLR), and linear ODE models [8].
Community Networks (CNs) integrate multiple inference methods to obtain a
common consensus prediction. They have been shown to achieve better average
confidence across different datasets and produce more robust results with respect
to the individual methods being composed [13]. A simple scheme for combining
predictions in a community network has been proposed in [13], where each in-
teraction is re-scored by averaging the ranks it obtained within each of all the
employed predictions. In the rest of the paper we will refer to it with CNrank.
Constraint Technologies have been recently successfully applied in the field of
System Biology [23]. For example, Answer Set Programming has been adopted
to address problems in network inconsistencies detection [7] and in metabolic
network analysis [21]. CP has been investigated to reason over discrete network
models, where GRNs are modeled using multi-valued variables and transition
rules [4]. In particular, CP is exploited to represent GRNs’ possible dynamics [6].

2

3 Methods

The CN approach adopted in this work is built by combining four GRN inference
procedures and creating an inference ensemble. Three of them are top-ranking
methods that have been presented in the past DREAM competitions [13]: (i)
TIGRESS [9], (ii) Inferelator [8], and (iii) GENIE3 [10]. The fourth is an “off-
the-shelf” widely adopted MI-based method (CLR) [5]. TIGRESS is a regression
method which imposes a regression problem to each gene, solving it using Lasso
Regression [22] with stability selection [16] together with a bootstrapping tech-
nique [9]; GENIE3 uses a Random Forest approach to rank interactions based
on the importance of TFs for the prediction [10]. Inferelator: is a meta approach
based on re-sampling combining median-corrected z-scores(MCZ), to rank edges
based on a z-score derived from TF-deletion data, time-lagged CLR (tlCLR),
for the analysis of time-series data, and a linear ODE model constrained by
Lasso [8]. CLR [5] is a GRN inference method based on statistical likelihood of
MI values, and hence is capable of capturing “non-linearity” features in the data.
In particular CLR applies a correction step to eliminate indirect interactions [5].
The former methods employ bootstrapping whilest the latter does not. These
methods have been selected to provide robustness and diversity, avoiding method
redundancies that could potentially bias the inference ensemble. We use the GP-
DREAM web platform (http://dream.broadinstitute.org) to generate the
predictions from each of these methods.

The initial set of methods for the CN approach plays a central role in the
final prediction and a robust analysis of strengths and weaknesses may greatly
influence performance. Nevertheless, this analysis is beyond the scope of this
paper.

3.1 Problem Formalization

Gene Regulatory Networks. A GRN can be described by a weighted directed
graph G = (V,E), where V is the set of regulatory elements of the network and
E ⊆ V × V × [0, 1] is the set of regulatory interactions. The presence of an edge
�s, t, w� ∈ E indicates that an interaction between the regulatory elements s and
t is present with confidence value w. The number |V | of regulatory elements of
the GRN is referred to as its size. If the GRN has no uncertainty, then each
edge in E has weight 1. In the problem of GRN inference, we are given the set
of vertices V and a set of experiments describing the behavior of the regulatory
elements. The goal is to accurately detect the set of regulatory interactions E.

CSP modeling. Given a set of n genes, we describe a GRN inference prob-
lem as a CSP �X ,D, C� where X = �x1, . . . , xn2−n�, and each xk describes a
regulatory relation (excluding self regulations); D = �D1, . . . , Dn2−n�, with each
Dk = {0, . . . , 100} describing the set of possible confidence values associated with
the regulatory relation modeled by xk. Values close to 0 indicate high confidence
about the absence of a regulatory relation (with 0 denoting the higest condi-
cence), whereas values close to 100 indicate high confidence about the presence

3

of a regulatory relation (with 100 denoting the highest confidence); C is a k-tuple
of constraints �C1, . . . , Ck�, where a constraint Cj over set of variables Sj ⊆ X

expresses a restriction for the joint assignments that can be given to the variables
in Sj . Constraints expressing restrictions of peculiar network topologies will be
discussed following in this Section. A variable xi is said to be assigned when
the possible choices for its value assignments in its associated domain Di have
been reduced to a single one. We adopt the notation d(xi) to indicate the value
of an assigned variable xi. For the sake of presentation, we denote with x�s,t�
the variable associated with the regulatory relation “s regulates t” and D�s,t�
its domain. A solution to the above CSP defines a GRN prediction G = (V,E),
with V = {1, . . . , n} and E = {�s, t, w� | d(x�s,t�) > 0}, where w = d(x�s,t�)/100.

Constraint Modeling. The proposed CSP solution leverages the collection of
GRN predictions obtained employing all the methods described in Sec. 3 by:
(1) considerably reducing the size of the solution search space3 and (2) taking
into account the discrepancies among the community predictions. Furthermore
we analyze various constraints that can be exploited to enforce the satisfaction
of GRNs’ specific properties and to take into account collective strengths and
individual weaknesses of the CN predictions.

Community Network Constraints.
Let us consider a set of predictions G of a GRN G = (V,E). We denote with

Gj each prediction in the inference ensemble, and we denote with Ej the edges
of E predicted by Gj with a given confidence score. We also assume that each
prediction has been normalized with respect to the ensemble itself. Furthermore,
let θd (0 ≤ θd ≤ 1) be a given disagreement threshold. The community network
constraint over a variable x�s,t� ensures that the possible confidence values to
be assigned during solution search are restricted to the average confidence score
of the community network predictions (w rank in Alg. 1) and its pseudo first
and third quantiles (w d in Alg. 1) when the edge confidence scores exhibit large
variance. The propagation of the community network constraint, described in
Alg. 1, reduces the possible values for a CSP variable to at most three. We
calculate the average confidence value, w rank, according to the Borda count
election method—as presented in [13]—averaging the ranked edge confidence
values assigned by each prediction. The discrepancy value, w d, captures the
ensemble prediction disagreement for a given edge, averaging the pairwise dif-
ferences of the edge ranks associated to each prediction of the ensemble. The
average confidence value and the discrepancy values within G are computed in
line (3) of Alg. 1. Both measures are normalized in the [0, 1] ⊆ R interval. If the
discrepancy value exceeds the discrepancy threshold θd and the average confi-
dence value is not strongly informative (line 5), we force the domain D�s,t� to
take account of the prediction disagreement by adding a variation of w d/2 to
the average confidence value. fd is the nearest integer function which converts
a prediction confidence value into an integer domain encoding, and it is defined
as: fd(x) = �100x + 0.5�. Line 4 ensures the presence of the value w rank in

3 An upper bound for the search space of a GRN inference problem of size n is 101n
2
.

4

D�s,t�. For a given prediction Gj , ω
#
j (s, t) : V × V → [0, 1] ⊆ R is the function

ranking the prediction confidence for the edge (s, t) within the confidence values
in Ej . The rank is normalized in the [0, 1] ⊆ R interval.

Algorithm 1 community network(x�s,t�, G, θd) filtering algorithm

Require: normalized Gj ∈ G, x�s,t�, θd
1: J ← |G|
2: B ← ∅

3: (w rank, w d) ←
�

1
J

J�

j=1

ω#
j (s, t),

1�
J
2

�
J�

j=1

J�

i=j+1

��ω#
j (s, t)− ω#

i (s, t)
��
�

4: B ← B ∪ {fd(w rank)}
5: if w d ≥ θd ∧ 0.1 < w rank < 0.9 then

6: B ← B ∪
�
max

�
0, fd

�
w rank− w d

2

��
, min

�
100, fd

�
w rank+

w d

2

���

7: end if
8: D�s,t� ← D�s,t� ∩B

Sparsity Constraints.
It is widely accepted that the GRN machinery is controlled by a relatively

small number of genes. Several state-of-the-art methods for reverse engineer-
ing GRNs encourage sparsity in the inferred networks [13]. Nevertheless, when
combining predictions in a community based approach, no guarantees on the
sparsity of the resulting prediction can be provided. To address this issue we in-
troduce a sparsity constraint, which is built from two more general constraints:
atleast k ge and atmost k ge. They both enforce a relation among a set of
variables and ensure that among the variables involved at least (resp. at most) k
of them have values greater or equal than a threshold. Formally, the constraint:

atleast k ge(k,X, θ) :
��{xi ∈ X | d(xi) > θ}

�� ≥ k (1)

enforces a lower bound (k) on the number of variables in X whose confidence
value is greater than θ; the constraint:

atmost k ge(k,X, θ) :
��{xi ∈ X | d(xi) > θ}

�� ≤ k (2)

limits to at most k the variables in X with confidence value greater than θ.
The propagation of the atmost k ge constraint is exploited during the solu-

tion search to enforce the property (2) by the following:

atmost k ge(k,X, θ) :
S = {xi ∈ X | d(xi) > θ}, |S| = k�

xj∈X\S

D�xj�=D�xj� ∩ {0, . . . , θ}
(3)

For the atleast k ge early failures can be detected during the solution search
by checking the upper bound on the number of variables not yet instantiated
which satisfy property (1).

The sparsity constraint g-sparsity is a global constraint over the variables in
X. It enforces lower and upper bounds on the number of edges whose confidence

5

value is outside a given threshold. Formally, given kl, km, θl, θm:

atleast k ge(kl, X, θl) ∩ atmost k ge(km, X, θm) (4)

Redundant Edge Constraints.
Several state-of-the-art inference methods rely on MI or correlation tech-

niques; the community approach adopted for this work employs CLR an MI-
based method (see Sec. 3). One of the disadvantages of such methods is the
difficulty in speculating on the directionality of a given prediction. We define
a constraint that has been effective in our experiments in detecting the edge
directionality based on the collective decision of the CN predictions, among the
non MI- or correlation-based methods.

Let us consider a collection of predictions G = {G1, . . . , Gn} for a GRN
G = (V,E), and a non-empty set of MI- or correlation-based methods H ⊆ G.
An edge (t, s) is said to be redundant if:

∀Gi ∈ G \ H . ωi(s, t) > ωi(t, s) + β (5)

where ωi(s, t) : V × V → [0, 1] ⊆ R expresses the confidence value of the edge
(s, t) in the prediction Gi, and β > 0 is a positive real value. Given a redun-
dant edge (t, s) we call the edge (s, t) the required edge. The redundant edge
constraint enforces a relation between two variables x�s,t� and x�t,s�. Let XR

be the set of all the required and redundant variables.4 For a pair of variables
x�s,t�, x�t,s� ∈ XR the constraint:

redundant edge(x�s,t�, x�t,s�, θe, L) : x�s,t� > θe ∧max(D�t,s�) < L (6)

ensures that the confidence value assigned to the required variable x�s,t� is greater
than a given threshold value θe ∈ N, with 0 ≤ θe ≤ 100, and that the domain
of the redundant edge variable x�t,s� contains no values greater than L. The
propagation of the redundant edge constraint is exploited during the solution
search to enforce property (6):

(x�s,t�, x�t,s�, θe, L) :
min(D�s,t�) > θe, max(D�t,s�) ≥ L

D�t,s� = D�t,s� ∩ {0, . . . , L− 1}
(7)

Transcriptor Factor Constraints.
Often, GRN specific information, such as sequence DNA-binding TFs or func-

tional activity of a set of genes, is available from public sources (e.g., DBD [12]).
Moreover, several studies show that similar mRNA expression profiles are likely
to be regulated via the same mechanisms [1]. Not every method may be de-
signed to handle such information, or this information can become available in
an incremental fashion, and hence not suitably usable by prediction methods.
We propose constraints that can directly incorporate such information in the
CN model.

4 x�s,t� is required/redundant if the corresponding edge (s, t) is required/redundant.

6

A regulatory element is a Transcription-factor (TF) if it regulates the production
of other genes. This property is described through a relation on the out-degree
of the involved gene for those edges with an adequate confidence value. The
transc-factor constraint over a gene s is enforced by an atleast k ge(k,Xs, θ)
constraint with Xs = {x�s,u� ∈ X | u ∈ V }, and k representing the co-expressing
degree, i.e., the number of genes targeted by the TF.

Multiple TFs can cooperate to regulate the transcription of specific genes;
these are referred to as Co-regulators. When this information is available it can
be expressed by a coregulator constraint. The latter involves two TFs, s� and
s��; it enforces a relation over a set of variablesX, to guarantee the existence of at
least k elements that are co-regulated by both s� and s�� for which an interaction
is predicted with confidence value greater than θ (0 < θ ≤ 1). Formally:

coregulator(k,X, θ) : ∀x�s�,t��, x�s��,t��� ∈ X
�� {(s�, s��, t�) | s� �=s�� ∧ t�= t�� ∧ d(x�s�,t��)>θ ∧ d(x�s��,t���)>θ}

�� ≥ k (8)

Search Strategy. The proposed modeling of GRN prediction allows a great
degree of flexibility in exploring the solution space. We implement two search
strategies: (1) a classical prop-labeling tree exploration (DFS), where constraint
propagation phases are interleaved with non-deterministic branching phases used
to explore different value assignments to variables [2], and (2) a Monte Carlo
(MC)-based prop-labeling tree exploration, which performs a random value as-
signment to each variable. We set a trial limit for the MC-based solution and a
solution number limit for both strategies.

GRN Consensus. A challenge in GRN inference is the absence of a widely
accepted objective function to drive the solution search. We decided to generate
an ensemble of m solutions and propose three criteria to compute the final
GRN prediction. Given a set of m solutions S = {S1, . . . , Sm}, where each
Si = �ai1, . . . , a

i
n2−n�, let S|xk =

�m
i=1{a

i
k} be the set of values assigned to the

variable xk in the different solutions, and freq(a, k) be the function counting
the occurrences of the value a among the assignments to xk in the solution set.
The consensus value a∗k associated with the variable xk is computed by:
• Max Frequency: a∗k = argmaxa∈S|xk

(freq(a, k)). This estimator rewards the
edge confidence value appearing with the highest frequency in the solution
set. The intuition is that edge-specific confidence values appearing in many
solutions may be important for the satisfaction of the constraints.

• Average: a∗k = 1
m

�m
i=1 a

i
k. It computes the average edge consensus among

all solution in order to capture recurring predictive trends.
• Weighted average: a∗k = 1�

a∈S|xk
freq(a,k)2

�
a∈S|xk

freq(a, k)2a. This es-

timator combines the intuitions of the two above by weighting the average
edge confidence by the individual quadratic value frequencies.

We also investigated some potential global measures—i.e., acting collectively on
the prediction values of all edges—in terms of the solution which minimizes the

7

Hamming distance among all edge prediction values. These global measures were
always outperformed by the three estimators discussed above.

3.2 A Case Study

We provide an example to illustrate our approach. We adopt the “E.coli2” net-
work from the 10-node DREAM3 subchallenge [14] (Fig. 1). The target network
has two co-regulators (G1 and G5) which are in turn regulated by gene G9. The
network has 15 interactions.
Phase 1: CN Predictions. The inference en-
semble was generated by feeding the data-
sets provided within the DREAM3 challenge
to each of the four methods adopted in the
community network schema (see Sec. 3). In
addition, we generate a CNrank as done in
[13], and used it to restrict the values to
be assigned to the variables subjected to the
community network constraint (see Sec. 3.1),
and as a comparison network for evaluation.
Phase 2: Modeling the CSP. We apply a Fig. 1: An extract of E.coli GRN

community network constraint to each variable of the CSP with disagreement
threshold θd = 0.20. Its application reduced the possible values to assign to each
variable to 1 for 64 cases, and to 3 for the others. As the inference ensemble
adopted employs methods that may suffer from the edge redundancy problem,
we impose a redundant edge constraint for all the edge pairs (s, t), (t, s) that
satisfy the definition with β = 0.15 as:

redundant edge(x�s,t�, x�t,s�, 75, 50). (r)

This constraint was able to reduce the value uncertainty for two additional
variables—only one element in their domains can possibly satisfy the condi-
tions above for any value choice of the required edge variable.
A sparsity constraint was imposed at a global level as:

g-sparsity : atleast k ge(10,X , 65) ∩ atmost k ge(25,X , 65). (s)

Phase 3: Generating the Consensus.We performed 1, 000 Monte Carlo samplings
and return all the solutions found, which we refer to as Constrained Commu-
nity Networks (CCNs). To illustrate the effect of constraints integration on the
CCNs we consider the best prediction returned by each CSP exhibiting a differ-
ent combinations of the imposed constraints. We plot it as a graph containing all
and only the edges of highest confidence necessary to make such graph weakly
connected. These resulting predictions are illustrated in Fig. 2, together with the
CNrank (top-right). In each network the green edges (thick with filled arrows) de-
note the true positive predictions, the red edges (with empty arrows) denote the
false positive predictions, and the gray (dotted) edges denote the false negatives.

8

Fig. 2: The CNrank consensus (top-right) and the CCN prediction after the integration
of the redundant edge and sparsity constraints (top-left), the TF constraints (bottom-
left) and Co-factor constraint (bottom-right).

The results are also summarized in Table 1, where we report the AUC scores [3]
for the best prediction (CCNbest) generated and for each CCN generated by the
evaluation criteria presented in in Sec. 3.1.
Phase 4: Employing network specific information. Let us now model some specific
information about the target network. The target network includes three TFs:
G1, G5, G9, which can be modeled via three transc factor constraints as:

atleast k ge(2, N1, 85), atleast k ge(2, N5, 85), atleast k ge(2, N9, 85) (t)

with Ni = {x�i,s� | (∀Gj ∈ G) ωj(i, s) > 0.10}. Note that ωj(i, s) is the prediction
confidence assigned to edge (i, s) by the inference method J in the prediction
Gj . Fig. 2 and Table 1 show the improvements using the latter formalization.

Finally, speculation about the activity of genes G1 and G2 as co-regulators
can be captured via a coregulator constraint expressed by:

coregulator(1, V, 75) (c)

with V defined as in (8) with s� = 1, s�� = 5. As shown in Fig. 2 and in Table 1,
the application of this additional constraint produces further improvements. A
discussion on the parameter selection is presented in Section 4.

4 Results and Discussions

Benchmark Networks & Datasets. The proposed approach has been tested
using benchmarks from the DREAM3 and DREAM4 competitions [14, 17]. In

9

Constr. CN rank CCN best CCNmax-f CCN avg CCNw-avg

r 0.7271 0.8036 0.7556 0.7644 0.7751
s 0.7271 0.8044 0.7529 0.7164 0.7591

r, s 0.7271 0.8453 0.7778 0.7609 0.7760
r, s, t 0.7271 0.9209 0.7458 0.8489 0.8587

r, s, t, c 0.7271 0.9378 0.7929 0.8622 0.8729

Table 1: The effects of constraint integration on the AUC scores for the “Ecoli2” CCNs.

both challenges the network topologies were obtained by extracting subnetworks
from transcriptional regulatory networks of E. coli [19] and S. cerevisiae [18],
including parts of the network with cycles and removing auto-regulatory inter-
actions. The dynamics of the networks were simulated using a detailed kinetic
model wich simulates both transcription and translation (see [14] and [17] for a
more detailed description). The datasets adopted to produce the predictions via
the methods composing the CN ensemble include the steady state expression
levels for wild type and for knockouts of every gene and the time-series data
(a variable number of trajectories, depending on the size of the network). We
generate 110 predictions: 50 of size 10, 25 of size 50, and 50 of size 100. For
each problem we generate four consensus from each of the community methods
described in Sec. 3 together with a consensus network constructed by averaging
individual edges ranks (CN rank).

Validation. To measure prediction accuracy against the corresponding refer-
ence network we adopted the AUC score [3], which relates the ratio between the
true positive rate and the false positive rate. An AUC value of 0.5 corresponds
to a random prediction, whereas a value of 1.0 indicates perfect prediction.

Settings. The experiments were performed on a generic Finite Domain CSP
solver, which explores the space of the possible solutions via a classic prop-
labeling tree [2]. The system explores the queue of constraints using techniques
based on the notion of event (a change in the domain of a variable) and it
is implemented in C++. We emphasize that the focus of this paper is on the
formalization of the GRN inference in a CP context and its feasibility study.
Therefore we leave the performance comparison of the CSP model on other well
known constraint solvers (e.g., Gecode, JaCoP, etc.5) as object of further studies.

For each experiment we perform a 1, 000 Monte Carlo samplings and generate
the CCNs using all the solution found. We observed that the DFS was always out-
performed by the MC search and therefore not reported. The community network
constraint was enabled by default on every variable of the problem. The dis-
agreement threshold θd was set to be as the average of the discrepancy values
w d across all the edges of the network (see Alg. 1).

The g sparsity (s) and redundant edge (r) constraints have been enabled
for all the experiments. To guide the parameter selection for the sparsity con-
straint, we set thresholds θl and θm (see Eq. (4)) to be respectively the n-th

5 see http://www.minizinc.org/

10

and the n log(n)-th highest values in the CN rank edge list. Hence, we identify
the bounds kl and km which would make the constraint unsatisfiable and use
them to set the sparsity parameters. In this way, kl and km are set so that they
are bounded, respectively, above by |{xi|xi ∈ X ∧max(Dxi) > θl}|, and below
by |{xi|xi ∈ X ∧min(Dxi) > θm}|, provided that kl < km. The closer are their
values to the respective bounds, the more restrictive is the constraint. For the
redundant edge constraints we impose the threshold θe as the average of all the
required edges confidence values composing the reduced ensemble set G \ H, L
to be the minimum confidence value among all the ones associated to the re-
dundant edges in G \ H (see Eq. (6)) and the value β was set to be the mean
among all the differences of the confidence values of the pair of edges (s, t) and
(t, s) in each of the network of the CN ensemble G (see Eq. (5)). We observed
that such settings, for both search and constraints parameters, produced stable
results across the whole benchmark set, which in turn was designed to capture
a variety of network topologies to assess GRN inference algorithms. We gen-
erate four CN consensus (CCNs), one for each estimator described in Sec. 3.1
(CCNmax-f, CCNavg, CCNw-avg) and CCNbest, as best prediction with respect to
the AUC score, and compare them against CNrank. The estimators-based CCNs
may outperform the CCNbest as they are not elements of the set of solutions
returned. We experimentally verified their constraints consistency, which was
always satisfied.

Experiments. We first focused on examining the predicted CCNs using the
sparsity and redundant edge constraints to leverage community-method features
and networks properties. We categorize the benchmarks by DREAM edition and
size (n), and average their respective AUC scores. Table 2 reports the percentage
of the average AUC improvements for the best CCNbest and best CCNw-avg

with respect to CNrank across all the benchmarks (first two rows). Our choice
of reporting only the weighted average estimator, among all those defined in
Sect. 3.1, is driven by the observation that the former offers higher stability to
parameter tuning and in general outperforms the other two. The CCNs achieved
higher average prediction accuracy with respect to CNrank for small and medium
size networks, while performance improvements decreased for bigger networks.
This is probably due to the high permissiveness of the CSP model for bigger
networks. We show next that the application of additional constraints overcomes
such effect.

We extended the set of constraints to include specific knowledge about indi-
vidual networks. We enabled the transcriptor-factor constraint over a set of ran-
domly selected genes which were verified TFs in the target networks. The TFs
set sizes were chosen to be at most 30%, 15% and 10%, respectively, for the net-
works of size 10, 50 and 100; the co-expressing degree was set as �k= log(n)� and
θ as the n-th highest value in the CN rank edge list. We performed 5 repetitions
and for each TF t the set of possible regulators X has been chosen among the
variables x�t,s� such that ω#(t, s) > 0.25. Moreover to promote such constraint
we increased the uncertainty for the regulation x�t,s� such that maxD�t,s� ≤ 50.
These parameters were chosen in accordance to the study presented in [1] show-

11

Dream3 10 Dream4 10 Dream3 50 Dream3 100 Dream4 100

CCNs r
best +10.52 +7.01 +3.63 +1.75 −0.17

CCNs r
w-avg +3.01 +1.96 +1.49 +0.43 +0.05

CCNs r t
best +15.02 +8.43 +8.49 +4.13 +2.29

CCNs r t
w-avg +5.42 +2.48 +6.32 +3.21 +4.21

Table 2: Average AUC score improvements (in percentage) with respect to CN rank

ing that genes with high correlated mRNA expression profiles are more likely to
share a common TF binder.

The integration of additional knowledge produced improvements of the AUC
scores for both the best and the weighted average measures—see the last two
rows of Table 2. A complete summary of the results is reported in Table 3,
where we report the AUC scores for the benchmark test set categorized by
DREAM challenge and network size. In order from left to right, Table 3 shows
the AUC scores for the networks predicted by each of the methods employed
in the CNs—CLR, GEN (Genie3), TIG (Tigress), INF (Inferelator); the CN rank

predictions; the CCNs results computed by enabling the redundant edge and the
sparsity constraint; and the CCNs returned by extending the model to include
the transcriptor factor constraints. The table reports the best predictions found
by each estimator. The best average AUC scores among the four individual
methods composing the CNs are underlined. The average CCNs AUC scores
outperforming CN rank are highlighted in bold.

The CCNs outperformed in general CNrank, and CCNw-avg offers larger im-
provement for the bigger networks with respect to the version without the TF
constraint. This supports our hypothesis that the addition of biological knowl-
edge can better guide the predictions even if re-adopting the same inference
ensemble. From a preliminary analysis of the incorrect predicted regulations
supported by the TF constraint we observed that many of the erroneous infer-
ences relate genes located in different regions of the graph. This effect could be
attenuated by clustering the consensus graph for different connectivities, and
targeting the TF constraint on the same cluster (if no prior knowledge on the
specific TF is given). We plan to investigate this direction as future work.

5 Conclusions

In this paper we introduced a novel approach based on CP to infer GRNs by
integrating a collection of predictions in a CN. Our approach does not impose
any hypothesis on the datasets adopted nor on the type of inference methods.
We introduced a class of constraints able to (1) enforce the satisfaction of GRNs’
specific properties and (2) take account of the community prediction collective
agreements on each edge, and of method-specific limitations. Experiments over
a set of 110 benchmarks proposed in past editions of the DREAM challenges
show that our approach can consistently outperform the consensus networks con-
structed by averaging individual edges ranks, as proposed in [13] (up to 15.02%
for small networks and 4.13% for big networks). We have shown how knowledge
specific about target networks could provide further improvements in the AUC

12

measure. This was possible as our model encourages the modular integration of
biological knowledge, in form of logical rules, and proposes a set of candidate
solutions satisfying the imposed constraints rather than an arbitrary one chosen
among many. We introduced three estimators to compute a consensus from the
set of consistent candidates and verified their consistency among the imposed
constraints. We plan to investigate new optimization measures by taking into
account local and global network properties, e.g., the number of specific network
motifs in a target GRN region, or the scale free degree in a given a portion of
the graph. This can be achieved by including soft constraints in our model. On
the CP side, we will extend existing constraints, for instance by studying the
most likely set where a TF constraint could be targeted, and model new con-
strains and propagators to capture different type of biological knowledge, such
us information about cell conditions at the time of the experiments.

13

N
e
tw

o
rk

C
L
R

G
E
N

T
IG

IN
F

C
N

ra
n
k
C
C
N

s
r

b
e
st

C
C
N

s
r

m
a
x
-f
C
C
N

s
r

a
v
g
C
C
N

s
r

w
-a
v
g
C
C
N

s
r
t

b
e
st

C
C
N

s
r
t

m
a
x
-f
C
C
N

s
r
t

a
v
g
C
C
N

s
r
t

w
-a
v
g

D
R
E
A
M

3
S
iz
e
1
0

E
co

li
1

0.
68

01
0.
73

99
0.
75

60
0.
65

65
0.
71

92
0.
81

01
0.
74

43
0.
74

22
0.
73

19
0.
86

42
0.
77

56
0.
76

64
0.
76

64
E
co

li
2

0.
70

80
0.
75

37
0.
60

09
0.
70

49
0.
72

71
0.
84

53
0.
77

78
0.
77

78
0.
77

78
0.
92

09
0.
84

44
0.
86

76
0.
84

56
Y
e
a
st
1

0.
66

37
0.
72

12
0.
79

50
0.
57

62
0.
74

13
0.
85

50
0.
76

25
0.
73

50
0.
76

37
0.
86

13
0.
73

25
0.
76

88
0.
76

85
Y
e
a
st
2

0.
60

54
0.
60

86
0.
68

31
0.
55

32
0.
61

91
0.
71

45
0.
65

60
0.
61

23
0.
66

40
0.
76

06
0.
67

94
0.
66

46
0.
65

57
Y
e
a
st
3

0.
52

31
0.
58

69
0.
58

42
0.
52

94
0.
54

28
0.
65

07
0.
57

42
0.
55

88
0.
56

22
0.
69

35
0.
64

57
0.
58

22
0.
58

42
A
v
g

0.
63

60
0.
68

21
0.
68

38
0.
60

40
0.
66

99
0
.7
7
0
0

0
.7
0
2
3

0
.6
8
5
2

0
.7
0
0
0

0
.8
2
0
1

0
.7
3
5
5

0
.7
2
9
9

0
.7
2
4
1

D
R
E
A
M

4
S
iz
e
1
0

N
e
t1

0.
75

60
0.
80

00
0.
66

40
0.
62

58
0.
74

93
0.
78

58
0.
72

44
0.
73

24
0.
73

24
0.
84

71
0.
76

80
0.
76

00
0.
76

44
N
e
t2

0.
66

64
0.
69

93
0.
62

41
0.
65

41
0.
69

43
0.
79

81
0.
76

18
0.
71

88
0.
71

88
0.
82

18
0.
73

31
0.
73

65
0.
73

48
N
e
t3

0.
72

84
0.
68

62
0.
64

71
0.
85

02
0.
80

18
0.
86

22
0.
83

96
0.
83

29
0.
83

64
0.
86

49
0.
80

62
0.
83

29
0.
83

38
N
e
t4

0.
81

62
0.
76

32
0.
76

92
0.
84

41
0.
85

01
0.
91

71
0.
87

71
0.
86

01
0.
86

01
0.
92

01
0.
85

11
0.
87

01
0.
87

21
N
e
t5

0.
86

32
0.
87

61
0.
81

73
0.
74

73
0.
87

18
0.
95

41
0.
90

06
0.
90

06
0.
90

38
0.
93

48
0.
89

74
0.
89

21
0.
88

57
A
v
g

0.
76

60
0.
76

49
0.
70

43
0.
74

43
0.
79

34
0
.8
6
3
5

0
.8
2
0
7

0
.8
0
9
0

0
.8
1
0
3

0
.8
7
7
7

0
.8
1
1
2

0
.8
1
8
3

0
.8
1
8
2

D
R
E
A
M

3
S
iz
e
5
0

E
co

li
1

0.
63

26
0.
66

31
0.
67

50
0.
61

24
0.
66

78
0.
73

17
0.
68

01
0.
68

71
0.
69

91
0.
79

19
0.
71

95
0.
77

24
0.
77

40
E
co

li
2

0.
66

09
0.
72

27
0.
65

66
0.
67

19
0.
70

10
0.
72

14
0.
70

83
0.
70

75
0.
70

64
0.
82

05
0.
74

81
0.
79

54
0.
79

54
Y
e
a
st
1

0.
58

80
0.
72

27
0.
64

34
0.
60

09
0.
65

39
0.
68

17
0.
65

45
0.
64

96
0.
65

86
0.
72

05
0.
65

20
0.
67

82
0.
68

42
Y
e
a
st
2

0.
57

25
0.
66

72
0.
60

49
0.
59

42
0.
62

73
0.
66

09
0.
64

66
0.
64

29
0.
64

42
0.
68

66
0.
67

80
0.
67

12
0.
67

25
Y
e
a
st
3

0.
59

96
0.
62

36
0.
59

34
0.
60

65
0.
61

81
0.
65

36
0.
62

36
0.
62

36
0.
63

40
0.
67

31
0.
63

60
0.
65

80
0.
65

79
A
v
g

0.
61

07
0.
67

99
0.
63

47
0.
61

72
0.
65

36
0
.6
8
9
9

0
.6
6
2
6

0
.6
6
2
1

0
.6
6
8
5

0
.7
3
8
5

0
.6
8
6
7

0
.7
1
5
0

0
.7
1
6
8

D
R
E
A
M

3
S
iz
e
1
0
0

E
co

li
1

0.
69

37
0.
76

24
0.
73

59
0.
73

53
0.
77

04
0.
78

31
0.
76

47
0.
77

16
0.
77

46
0.
81

31
0.
79

21
0.
81

28
0.
81

28
E
co

li
2

0.
65

34
0.
74

27
0.
65

07
0.
68

43
0.
71

52
0.
73

53
0.
71

79
0.
71

86
0.
72

26
0.
78

26
0.
74

79
0.
76

93
0.
76

92
Y
e
a
st
1

0.
60

56
0.
76

32
0.
61

58
0.
68

79
0.
69

75
0.
71

41
0.
70

31
0.
69

84
0.
70

14
0.
73

37
0.
70

86
0.
71

81
0.
71

87
Y
e
a
st
2

0.
55

78
0.
65

48
0.
54

93
0.
60

74
0.
61

16
0.
63

71
0.
61

16
0.
61

64
0.
61

34
0.
65

24
0.
62

01
0.
63

94
0.
64

38
Y
e
a
st
3

0.
55

81
0.
58

23
0.
53

21
0.
56

29
0.
55

96
0.
57

23
0.
56

05
0.
56

29
0.
56

42
0.
57

94
0.
56

84
0.
56

33
0.
57

04
A
v
g

0.
61

37
0.
70

10
0.
61

67
6
0.
65

56
0.
67

09
0
.6
8
8
4

0
.6
7
1
6

0
.6
7
3
6

0
.6
7
5
2

0
.7
1
2
2

0
.6
8
7
4

0
.7
0
0
6

0
.7
0
3
0

D
R
E
A
M

4
S
iz
e
1
0
0

N
e
t1

0.
67

10
0.
74

95
0.
67

44
0.
75

48
0.
78

29
0.
77

97
0.
75

23
0.
77

88
0.
77

85
0.
79

75
0.
76

06
0.
82

73
0.
82

73
N
e
t2

0.
68

12
0.
70

83
0.
63

38
0.
71

07
0.
75

11
0.
73

96
0.
72

28
0.
75

49
0.
75

35
0.
77

73
0.
76

37
0.
80

85
0.
80

85
N
e
t3

0.
63

01
0.
69

45
0.
62

03
0.
72

40
0.
71

58
0.
72

54
0.
69

56
0.
71

91
0.
72

00
0.
74

55
0.
72

88
0.
74

54
0.
74

92
N
e
t4

0.
65

32
0.
68

53
0.
61

21
0.
75

59
0.
74

08
0.
73

80
0.
72

00
0.
74

29
0.
74

29
0.
76

04
0.
72

30
0.
76

52
0.
77

42
N
e
t5

0.
65

83
0.
70

47
0.
62

78
0.
67

19
0.
72

22
0.
72

20
0.
70

54
0.
71

98
0.
72

05
0.
74

66
0.
72

41
0.
76

26
0.
76

43
A
v
g

0.
65

88
0.
70

85
0.
63

37
0.
72

35
0.
74

26
0.
74

09
0.
71

92
0
.7
4
3
1

0
.7
4
3
1

0
.7
6
5
5

0.
74

00
0
.7
8
1
8

0
.7
8
4
7

T
ab

le
3:

A
U
C

sc
or
es

co
m
p
ar
is
on

.

14

References

1. D. Allocco et al. Quantifying the relationship between co-expression, co-regulation
and gene function. BMC Bioinformatics, 5(1):18+, Feb. 2004.

2. K. Apt. Principles of Constraint Programming. Cambridge University Press, 2009.
3. P. Baldi et al. Assessing the accuracy of prediction algorithms for classification:

an overview. Bioinformatics, 16(5):412–424, 2000.
4. F. Corblin, E. Fanchon, and L. Trilling. Applications of a formal approach to

decipher discrete genetic networks. BMC Bioinformatics, 11:385, 2010.
5. J. J. Faith et al. Large-scale mapping and validation of escherichia coli transcrip-

tional regulation from a compendium of expression profiles. PLoS Biol, 5(1), 2007.
6. J. Fromentin et al. Analysing gene regulatory networks by both constraint pro-

gramming and model-checking. Conf Proc IEEE Eng Med Biol Soc., 4595–8, 2007.
7. M. Gebser et al. Detecting inconsistencies in large biological networks with answer

set programming. CoRR, abs/1007.0134, 2010.
8. A. Greenfield et al. Dream4: Combining genetic and dynamic information to iden-

tify biological networks and dynamical models. PLoS ONE, 5(10):e13397, 10 2010.
9. A. Haury et al. Tigress: Trustful inference of gene regulation using stability selec-

tion. BMC Syst Biol, 6(1):145, 2012.
10. V. A. Huynh-Thu et al. Inferring regulatory networks from expression data using

tree-based methods. PLoS ONE, 5(9):e12776, 09 2010.
11. S. Kim et al. Dynamic Bayesian network and nonparametric regression for mod-

eling of GRNs from time series gene expression data. Biosystems, 104–113, 2003.
12. S. K. Kummerfeld and S. A. Teichmann. DBD: a transcription factor prediction

database. Nucl. Acids Res., 34(suppl 1):D74–81, 2006.
13. D. Marbach et al. Wisdom of crowds for robust gene network inference. Nat Meth,

9(8):796–804, Aug. 2012.
14. D. Marbach et al. Revealing strengths and weaknesses of methods for gene network

inference. Proc Natl Acad Sci U S A, pages 6286–6291, 2010.
15. A. A. Margolin et al. Aracne: An algorithm for the reconstruction of gene regula-

tory networks in mammalian cellular context. BMC Bioinformatics, 7(S1), 2006.
16. N. Meinshausen et al. Stability selection J, of the Royal Stat. Soc., S. B 72(4),

417–473, 2010.
17. R. J. Prill et al. Towards a rigorous assessment of systems biology models: The

dream3 challenges. PLoS ONE, 5(2):e9202, 02 2010.
18. Reguly et al. Comprehensive curation and analysis of global interaction networks

in Saccharomyces cerevisiae. Journal of biology 4(5):11+, 2006
19. Shen-Orr et al. Network motifs in the transcriptional regulation network of Es-

cherichia coli. Nature Genetics 1(31):1061–4036, 2002.
20. A. Ŝırbu et al. Integrating heterogeneous gene expression data for gene regulatory

network modelling. Theory in Biosciences, 131(2):95–102, 2012.
21. T. Soh and K. Inoue. Identifying necessary reactions in metabolic pathways by

minimal model generation. In ECAI, pages 277–282, IOS Press, 2010.
22. R. Tibshirani Regression Shrinkage and Selection Via the Lasso J. of the Royal

Stat. Soc., S. B, 58, 267–288, 1994.
23. S. Videla et al. Revisiting the training of logic models of protein signaling networks

with asp. In CMSB, pages 342–361, 2012.
24. X. Zhou et al. Genomic Networks: Statistical Inference from Microarray Data.

Wiley, 2006.

15

16

Recursive Best-First AND/OR Search with

Overestimation for Genetic Linkage Analysis

Akihiro Kishimoto and Radu Marinescu

IBM Research – Ireland

akihirok,radu.marinescu@ie.ibm.com

Abstract. The paper presents and evaluates the power of limited memory best-

first search over AND/OR search spaces for genetic linkage analysis. We pro-

pose Recursive Best-First AND/OR Search with Overestimation (RBFAOO), a

new algorithm that explores the search space in a best-first manner while oper-

ating with restricted memory. In addition, we develop a simple overestimation

technique aimed at minimizing the overhead associated with re-expanding inter-

nal nodes. Our preliminary experiments show that RBFAOO is often superior to

current state-of-the-art approaches, especially on very hard problem instances.

1 Introduction

Graphical models such as belief or constraint networks are a widely used representa-
tion framework for reasoning with probabilistic and deterministic information. These
models use graphs to capture conditional independencies between variables, allowing
a concise knowledge representation as well as efficient graph-based query processing
algorithms. Optimization tasks such as finding the most likely state of a belief network
or finding a solution that violates the least number of constraints can be defined within
this framework and are typically tackled with either search or inference algorithms [1].
The most common search scheme is the depth-first branch and bound. Its use for find-
ing exact solutions was studied and evaluated extensively, especially in the context of
AND/OR search spaces that are sensitive to the underlying problem structure [2, 3].

Meanwhile, best-first search algorithms, despite their better time efficiency than
depth-first search [4], are largely ignored in practice primarily due to their inherently
enormous memory requirements [3]. Furthermore, an important best-first search prop-
erty, avoiding the exploration of unbounded paths, seems irrelevant to optimization in
graphical models where all solutions are at the same depth (ie, the number of variables).

This paper aims at inheriting advantages of both depth-first and best-first search
schemes in graphical models. We introduce RBFAOO, a new algorithm that explores the
context-minimal AND/OR search graph associated with a graphical model in a best-first
manner (even with non-monotonic heuristics) while operating within restricted mem-
ory. RBFAOO extends Korf’s Recursive Best First Search (RBFS) [5] to graphical mod-
els and thus uses a threshold controlling technique to drive the search in a depth-first
like manner while using the available memory to cache and reuse partial search results.
In addition, RBFAOO employs an overestimation technique designed to further reduce
the high overhead caused by re-expanding internal nodes. RBFAOO is also related to

17

the AND/OR search algorithms based on Allis et al.’s proof/disproof numbers [6] (eg,
df-pn+ [7]) which are very popular for solving two-player zero-sum games [8]. How-
ever, one crucial difference between games and graphical models is that game solvers
ignore the solution cost. The latter algorithms, therefore, do not come with optimality
guarantees.

We focus the empirical evaluation on the task of finding the maximum likelihood
haplotype configuration of a pedigree in genetic linkage analysis. Our preliminary re-
sults on a set of difficult pedigree networks show that RBFAOO improves dramatically
over the most competitive state-of-the-art solvers, especially on very hard problem in-
stances and when guided by relatively inaccurate heuristics.

2 Background

2.1 Belief Networks and their AND/OR Search Spaces

Belief Networks provide a formalism for reasoning about partial beliefs under con-
ditions of uncertainty. A belief network is a tuple B = 〈X,D, G,P〉, where X =
{X1, . . . , Xn} is a set of random variables, D = {D1, . . . , Dn} is the set of the cor-
responding discrete valued domains, G is a directed acyclic graph over X and P =
{p1, . . . , pn}, where pi = P (Xi|pa(Xi)) (pa(Xi) are the parents of Xi in G) denote
conditional probability tables (CPTs). The belief network represents a joint probabil-
ity distribution over X having the product form PB(x̄) =

∏n
i=1 P (xi|xpai

), where
an assignment (X1 = x1, . . . , Xn = xn) is abbreviated to x̄ = (x1, . . . , xn), where
pa(Xi) = xpai

, and where xS denotes the restriction of a tuple x over a subset of
variables S. An evidence set e is an instantiated subset of variables. The primary op-
timization task over belief networks is finding the most probable explanation (MPE),
namely finding a complete assignment to all variables having maximum probability,
given the evidence. In practice, the MPE is typically solved as a minimization task by
taking the negative log of the probability values. Namely, it is equivalent to finding
argminX

∑n
i=1 − logP (Xi|pa(Xi)).

The concept of AND/OR search spaces for graphical models has been introduced to
better capture the problem structure [9]. Given a belief network B = 〈X,D, G,P〉 and
a pseudo tree T [10] of G that captures problem decomposition, an AND/OR search
graph based on T has alternating levels of OR nodes corresponding to the variables
and AND nodes corresponding to the values of the OR parent’s variable, with edges
weighted according to P. Identical subproblems, identified by their context (the par-
tial instantiation that separates the subproblem from the rest of the network), can be
merged, yielding an AND/OR search graph [9]. Merging all context-mergeable nodes
yields the context-minimal AND/OR search graph. The state of the art algorithms are
AND/OR Branch-and-Bound (AOBB) and AND/OR Best-First (AOBF) [2, 3] that uti-
lize the mini-bucket heuristics which are admissible and consistent [11].

2.2 Genetic Linkage Analysis

In human genetic linkage analysis [12], the haplotype is the sequence of alleles at dif-
ferent loci inherited by an individual from one parent. The two haplotypes (maternal

18

!

" #

$ $

%&"'() %&#'(*

!

" #

$ $

%&#'(*

+ ,

--

.%&"'(*

%&+'($ %&,'()

.%&+'()

.%&"'(*

!

" #

$ $

%&#'(*

+ ,

--

.%&"'(*

%&,'()
/

.%&+'()

$

%&/'(0

!

" #

$ $

%&#'(*

+ ,

--

.%&#'(1

%&,'()
/

$

%&/'(0
&2' &3' &4' &5'

6789:5;

!<+89:5;

Fig. 1. Snapshot of RBFAOO search with no overestimation

and parental) of an individual constitute this individual’s genotype. When genotypes
are measured by standard procedures, the result is a list of unordered pairs of alleles,
one pair for each locus. The maximum likelihood haplotype problem consists of finding
a joint haplotype configuration for all members of the pedigree which maximizes the
probability of data. The pedigree can be represented as a belief network with three types
of random variables: genetic loci variables, which represent the genotypes of the indi-
viduals in the pedigree (two loci variables per individual per locus, one for the parental
allele and one for maternal allele), phenotype variables, and selector variables which are
auxiliary variables used to represent the gene flow in the pedigree. The CPTs that corre-
spond to the selector variables are parametrized by the recombination ratio θ [13]. The
remaining tables contain only deterministic information. It can be shown that given the
pedigree data, the haplotyping problem is equivalent to computing the most probable
explanation of the corresponding belief network (see also [13, 14] for more details).

3 Recursive Best-First AND/OR Search with Overestimation

Our RBFAOO uses a threshold controlling technique presented in [5, 7] to transform
best-first AO* [15] into depth-first search. Although RBFAOO may be regarded as a
special case of df-pn+ [7], RBFAOO additionally uses an overestimation technique to
possibly find a suboptimal solution and then refine it to an optimal one. Overestima-
tion plays an essential role in enhancing RBFAOO’s performance by avoiding a high
overhead of re-expanding internal nodes, while theoretically guaranteeing solution op-
timality.

RBFAOO inherits AOBB and AOBF’s advantages while overcoming their limita-
tions. As in AOBB, in practice, RBFAOO requires a smaller amount of memory than
AOBF and can allocate the remaining memory to a cache table to enhance search. When
RBFAOO fills up the cache table, an effective batch-based replacement scheme (eg,
[16]) discards useless table entries so that RBFAOO can save new results there. As in
AOBF, it tries to perform best-first search and tends to expand fewer nodes than AOBB.

Before explaining RBFAOO in detail, we give an overview of the threshold con-
trolling scheme that makes RBFAOO behave similarly to AO*. Assume that the weight
from an OR node to an AND node is 1, the weight from an AND node to an OR node
is 0, and a heuristic function h returns values as shown in Figure 1. Let q(n), called q-

value, be a lowerbound of the solution cost at node n and th(n) be RBFAOO’s threshold

19

at n. RBFAOO keeps examining the subtree rooted at n until either q(n) > th(n) or
the subtree is solved optimally. In Figure 1(a), RBFAOO selects B to expand, because
w(A,B)+ q(B) = w(A,B)+h(B) = 3 < w(A,C)+ q(C) = w(A,C)+h(C) = 5.
It sets th(B) = w(A,C) + q(C) − w(A,B) = 4 to indicate that C, which cur-
rently has the second smallest q-value, becomes the best child (ie, w(A,B) + q(B) >
w(A,C)+q(C) holds) if q(B) > th(B). Then, RBFAOO expands B and updates q(B)
by using the q-values of B’s children (Figure 1(b)). Because q(B) = q(D) + q(E) =
h(D) + h(E) = 3, q(B) ≤ th(B) still holds. Hence, RBFAOO examines B’s descen-
dants with no backtracks to A. Assume that D is chosen to examine. RBFAOO sets
th(D) = th(B) − q(E) = 2 to indicate that C becomes best if q(D) > th(D) holds,
which is equivalent to q(B) = q(D) + q(E) > th(D) + q(E) = th(B). Next, RB-
FAOO expands D and updates q(D) = w(D,F) + h(F) = 4 (Figure 1(c)). Because
q(D) > th(D), the subtree rooted at D contains no best leaf in terms of AO*’s strat-
egy. RBFAOO backtracks to A by updating q(B) = q(D) + q(E) = 6 and examines
C (Figure 1(d)) with th(C) = w(A,B) + q(B)− w(A,C) = 6 to be able to select B
when B becomes best.

RBFAOO revisits n to update q(n). Caching q(n) significantly reduces the overhead
of reexamining n’s subtree. Contexts of nodes in [3] are also used to merge different
nodes with the same outcome into one, thus enabling to avoid duplicate search effort.

Algorithm Description Figure 2 shows the pseudo-code of RBFAOO. Let ε be a small
number and assume ∞ − ε < ∞. By introducing ε, RBFAOO can return the solution
cost of ∞ if the root node has no solution. In practice, a finite real number is used to
represent ∞. Let δ be an empirically tuned parameter that determines the amount of
overestimation. HasNoChildren checks whether a node has no children (ie, terminal
leaf or dead-end) or not. Evaluate evaluates a terminal leaf/dead-end n and returns
a pair of the cost (ie, 0 or ∞) and a Boolean flag indicating whether n is solved or
a dead-end. UnsolvedChild returns an unproven child. SaveInCache saves in the
cache table a q-value and a flag indicating whether a node is solved optimally or not.
RetrieveFromCache retrieves them from the cache table. Context (see [3]) calcu-
lates the context of a node.

When RBFAOO starts solving a problem, the threshold of the root node is set to
∞− ε. If RBFAOO exceeds this threshold, the problem is proven to have no solution.
Otherwise, RBFAOO returns the optimal solution cost to the problem.

The RBFS function traverses the subtree in a depth-first manner. At each node,
RBFS calculates either an optimal solution cost or a lowerbound by using BestChild
or Sum and checks if the termination condition is satisfied. If the solution optimality is
guaranteed at node n, n.solved is set to true.

At an OR node, RBFS may find a suboptimal solution. In this case, n.solved is
still set to false and RBFS continues examining other children until it finds an optimal
solution at n. Because the solution cost found so far (ub in Figure 2) is an upperbound
of the optimal one, RBFS uses ub to prune branches that never lead to optimal solutions.

When RBFS selects cbest, it examines cbest with a new threshold. At OR nodes,
cbest.th is set to subtracting the weight between n and cbest from the minimum of: (1)
The current threshold for n. (2) The second smallest lowerbound q2 to solve n’s child
with considering the weight from n to that child among a list of such lowerbounds of n’s

20

// Set up for the root node
double RBFAOO(node root) {
root.th = ∞ − ε;
q = RBFS(root);
return q;

}
// Depth-first search with a threshold
double RBFS(node n) {

// Terminal leaf/dead-end check
if (HasNoChildren(n)) {

// Calculate the probability
// for a terminal leaf or dead-end
(q, s) = Evaluate(n);
// Store search results
SaveInCache(Context(n),q,s);
return q;

}
GenerateChildren(n);
// Continue search until satisfying
// the termination condition
if (n is an OR node)

loop {
(cbest, q, q2, ub) = BestChild(n);
if (n.th < q || n.solved = true)

break;
// Update the threshold
cbest.th = min(n.th,

q2 + δ,
ub) − w(n, cbest);

RBFS(cbest);
}

else
loop { // AND node
q = Sum(n);
if (n.th < q || n.solved = true)

break;
(cbest, qcbest) = UnsolvedChild(n);
// Update the threshold
cbest.th = n.th − (q − qcbest);
RBFS(cbest);

}
// Store search results
SaveInCache(Context(n),q,n.solved);
return q;

}

// Select the best child
double BestChild(node n) {
q = q2 = ub = ∞;
n.solved=false;
foreach (n’s child ci) {
ct = Context(ci);
if (ct is in the cache table)
(qci , s) = RetrieveFromCache(ct);

else {
qci = h(ci);
s=false;

}
qci = w(n, ci) + qci ;
if (s=true) // ci is solved

ub = min(ub, qci);
if (qci < q ||

(qci = q && n.solved=false)) {
q2 = q;
n.solved = s;
q = qci ;
cbest = ci;

} else if (qci < q2)
q2 = qci ;

}
return (cbest, q, q2, ub);

}
// Calculate the total value
double Sum(node n) {

q = 0;
n.solved = true;
foreach (n’s child ci) {
ct = Context(ci);
if (ct is in the cache table)
(qci , s) = RetrieveFromCache(ct);

else {
qci = h(ci);
s = false;

}
q = q + qci ;
n.solved = n.solved ∧ s;

}
return q;

}

Fig. 2. Pseudo-code of RBFAOO

children. This indicates when the current second best child becomes best. Additionally,
a parameter δ that allows for returning a suboptimal solution cost is added to q2 to avoid
an excessive number of backtracks to n. (3) The upperbound of the optimal solution at
n. At AND nodes, cbest.th is set to the sum of cbest’s q-value and the gap between n.th
and the total q-value of n’s children. If q(cbest) > cbest.th, q(n) > n.th also holds.

Let N be the number of nodes in the search space. If the search space fits into mem-
ory, AO* expands O(N) nodes in the worst case. In contrast, due to node re-expansions,
RBFAOO’s worst-case scenario is O(N2). However, in practice, by introducing δ, RB-
FAOO avoids such a high node re-expansion overhead.

The following theorem guarantees correctness of RBFAOO:

21

Theorem 1 (correctness). Given a belief network B and an admissible heuristic func-

tion h, if RBFAOO finds a solution x̄ to the MPE task over B, then x̄ is optimal.

Proof. We assume that RBFAOO tries to solve a minimization task. Let v(n) be the

optimal solution cost for node n. We first prove that for any value q for node n in the

cache table, q ≤ v(n) holds. Since different nodes with the same context are proven to

be equivalent in directed acyclic graphs [3], we denote n as Context(n) when a search

result at node n is saved in the cache table. Additionally, we assume h(n) = h(n′) if

Context(n) = Context(n′).
Let Cachet be the state of the cache table immediately after the t-th save is per-

formed in the cache table. Let Qt(n) be the value saved in Cachet for n if that value

exists in Cachet or h(n) if n is not preserved in Cachet. By induction on t, we prove

that all the entries in the cache table contain values that do not overestimate optimal

ones.

1. Because no result is stored in Cache0, the above property holds for t = 0.
2. Assume that the above property holds for t = k. Then, Qk+1(n), which is saved in

Cachek+1, is calculated as:
– If n is a terminal leaf, Evaluate(n) in the pseudo code always returns v(n).
Qk+1(n) = v(n) therefore holds.

– If n is an internal OR node, Qk+1(n) = w(n, cbest)+Qk(cbest) = mini(w(n, ci)+
Qk(ci)) holds where ci is n’s child. Additionally, because Qk(ci) ≤ v(ci),
Qk+1(n) ≤ mini(w(n, ci) + v(ci)) = v(n) holds.

– If n is an internal AND node, Qk+1(n) =
∑

i Qk(ci) where ci is n’s child.

Because Qk(ci) ≤ v(ci), Qk+1(n) ≤
∑

i v(ci) = v(n) holds.
Hence, Qt(n) ≤ v(n) holds in case of t = k + 1.

Let Q(root) be a value that is about to be saved in the cache table with satisfy-

ing the termination condition of root.solved = true. Q(root) ≤ v(root) holds from

the above. Additionally, because RBFAOO has traced a solution tree with the cost of

Q(root), v(root) ≤ Q(root) holds. Therefore, Q(root) = v(root) holds.

4 Preliminary Experiments

In this section, we evaluate empirically RBFAOO best-first AND/OR search scheme
on benchmark problems derived from genetic linkage analysis1. The algorithms were
implemented in C++ (64-bit) and the experiments were run on a 2.6GHz quad-core
processor with 80GB of RAM. We consider the following solving alternatives:

– AOBB(i) - the depth-first AND/OR Branch-and-Bound algorithm with full caching
and pre-compiled mini-bucket heuristics [3], where i is the mini-bucket i-bound.2

– AOBF(i) - the best-first AND/OR search algorithm exploring the context-minimal
AND/OR search graph (full caching) and using mini-bucket heuristics [3].3

1 Available at http://graphmod.ics.uci.edu
2 Implementation available at http://github.com/lotten/daoopt
3 Implementation available at http://graphmod.ics.uci.edu

22

– RBFAOO(i) - the recursive best-first AND/OR search algorithm from Section 3
also guided by the mini-bucket heuristics. The parameter δ used to control the over-
estimation was set to 1, which was determined by performing several preliminary
experiments. RBFAOO(i) was implemented on top of the AOBF(i) implementa-
tion.

– BTD - the depth-first Branch-and-Bound exploring a tree decomposition of the pri-
mal graph and enforcing soft local consistency, called EDAC (existential directional
arc-consistency), to generate a heuristic function [17]. We used the toulbar24

implementation with default parameters.

The algorithms using pre-compiled mini-bucket heuristics, AOBB(i), AOBF(i) and
RBFAOO(i), respectively, were restricted to a static variable ordering obtained as a
depth-first traversal of the guiding pseudo tree which was computed using a min-fill
heuristic iteratively and stochastically [18]. Algorithms AOBB(i) and AOBF(i) order
the subproblems rooted at node n in the search space in increasing order of their cor-
responding heuristic value. On the other hand, algorithm RBFAOO(i) orders the OR
children of an AND node in increasing order of their disproof numbers while the AND
children of an OR node are ordered in increasing order of their q-values.

To maintain a relatively fair comparison, BTD constructed its guiding tree decompo-
sition along the same variable ordering used by the other AND/OR search algorithms.
However, BTD orders the variables within a cluster dynamically using a last-conflict
backjumping based heuristic [19]. The algorithm breaks ties lexicographically.

Table 1 displays the results obtained for experiments with 10 pedigree networks.
We report the CPU time in seconds and the number of nodes expanded for solving the
problems. We also specify the problems parameters such as the number of variables (n),
maximum domain size (k), the depth of the pseudo tree (h) and the induced width of
the graph (w∗). The best time for each i-bound is shown in bold and underlined, while
the overall best performance points are boxed. The columns are indexed by the mini-
bucket i-bound, i ∈ {2, 4, 10, 16, 18}. All algorithms were allotted a 1 hour time limit.
Algorithm AOBF(i) was allowed a maximum of 80GB of RAM and its internal cache
table allocated memory dynamically, when needed. In contrast, algorithm RBFAOO(i)
used a cache table with 134,217,728 entries which pre-allocated 10 to 20GB of RAM.

When looking at the algorithms using mini-bucket heuristics, we see that RBFAOO(i)
outperforms dramatically its competitors, especially for relatively weak heuristics (which
are typically obtained for relatively small i-bounds) and on the most difficult problem
instances. For example, RBFAOO(2) using the weakest heuristic (i = 2) was able to
solve pedigree50 in about 15 minutes and expanding over 118 million nodes, while
AOBB(2) and AOBF(2) exceeded the time and memory limits, respectively. Moreover,
RBFAOO(16) was the only solver able to close largeFam2-10-52, a previously
unsolved instance, after about 36 hours and 12.8 billion node expansions, respectively.
The time limit for the latter instance was set to 100 hours.

In terms of the size of the search spaces explored, we see that AOBF(i) typically
expands the smallest number of nodes, as expected. RBFAOO(i) expands more nodes
than AOBF(i), due to re-expansions, but in many cases it expands significantly fewer

4 Available at: https://mulcyber.toulouse.inra.fr/projects/toulbar2/

23

instance algorithm i = 2 i = 4 i = 10 i = 16 i = 18 BTD

(n, k, w∗, h) time nodes time nodes time nodes time nodes time nodes time nodes

AOBB
pedigree7 AOBF 1311 30545960

RBFAOO 818 144733023 295 47907073

AOBB 2302 394887679 665 108980968
pedigree9 AOBF 1846 30506650 263 7682927 104 3187533

RBFAOO 3216 547471865 522 97410715 60 10634230 39 4369301

AOBB
pedigree13 AOBF

RBFAOO 2629 364037130 1490 207723571

AOBB
pedigree19 AOBF 2400 17666687

RBFAOO 1753 319268527 378 69780223 643 18761971

AOBB 2839 366982095 9 1254460 6 359262 29 12266
pedigree20 AOBF 905 25302204 21 823742 9 249215 29 11160 955 15658549

RBFAOO 558 106610582 170 34812813 4 965520 5 298133 28 12297

AOBB 1828 194090018 71 7897530 11 1343660 3 8698 5 1891

pedigree23 AOBF 289 4204220 43 1384921 10 292587 3 8284 5 1951 0 4880

RBFAOO 34 6745554 7 1766837 1 382167 3 8210 5 1868

AOBB 244 34182326 3 107437 7 10374

pedigree30 AOBF 726 7518886 45 1717523 3 30794 8 6682 896 12453725

RBFAOO 424 88306931 76 18897478 14 3840692 3 60479 7 4548

AOBB
pedigree31 AOBF 2758 56131507

RBFAOO 949 130673223

AOBB
pedigree41 AOBF

RBFAOO 1517 210630024 2017 277459272

AOBB 32 203925
pedigree50 AOBF 34 148878

RBFAOO 931 118042401 198 27289416 30 135836

AOBB
largeFam3-10-52 AOBF

RBFAOO 129633 12826083707

Table 1. Results for pedigree networks. CPU time (in seconds) and number of nodes expanded.

Time limit 1 hour. RBFAOO(i) ran with a 10-20GB cache table (134,217,728 table entries).

nodes than AOBB(i) which translates into important time savings. For example, on
pedigree23, RBFAOO(2) is almost two orders of magnitude faster than AOBB(2),
while expanding almost two orders of magnitude fewer nodes. We also notice that
RBFAOO(i) and AOBB(i) have a relatively small overhead per node expansion. In con-
trast, the computational overhead of AOBF(i) is much larger. It is caused primarily by
maintaining an extremely large search space in memory and, secondly, because the node
values are typically updated all the way up to the root. Finally, BTD is competitive only
on one instance (pedigree23), because the EDAC based heuristics are weaker than
the mini-bucket ones in this case, which causes the algorithm to explore a much larger
search space. In summary, we noticed that RBFAOO(i) was superior to its competi-
tors especially for relatively inaccurate heuristics (smaller i-bounds) and on the hardest
problem instances. This is important because it is likely that for these types of problems
it may only be possible to compute rather weak heuristics given limited resources.

5 Conclusion

The paper rests on two important contributions. First, we introduce a limited memory
best-first AND/OR search algorithm that traverses an AND/OR search graph for solv-
ing optimization tasks defined over graphical models. It belongs to the RBFS family
of algorithms, thus using a threshold controlling mechanism to guide the search, and
employs in addition a flexible caching scheme to reuse partial search results as well
as an overestimation mechanism to further reduce the node re-expansion rate. Second,

24

our preliminary empirical evaluation on a set of difficult pedigree networks showed that
RBFAOO is often superior to the current state-of-the-art solvers.

Our approach leaves room for further improvements. RBFAOO can be extended to
use dynamic variable heuristics as well as soft arc-consistency based heuristics. Since
many interesting real-world problems are still too hard to solve exactly, we also plan to
convert the algorithm into an anytime best-first search scheme.

References

1. R. Dechter. Constraint Processing. Morgan Kaufmann Publishers, 2003.

2. R. Marinescu and R. Dechter. AND/OR branch-and-bound search for combinatorial opti-

mization in graphical models. Artificial Intelligence, 173(16-17):1457–1491, 2009.

3. R. Marinescu and R. Dechter. Memory intensive AND/OR search for combinatorial opti-

mization in graphical models. Artificial Intelligence, 173(16-17):1492–1524, 2009.

4. R. Dechter and J. Pearl. Generalized best-first search strategies and the optimality of A*. In

Journal of ACM, 32(3):505–536, 1985.

5. R. Korf. Linear-space best-first search. Artificial Intelligence, 62(1):41–78, 1993.

6. L. V. Allis, M. van der Meulen, and H. J. van den Herik. Proof-number search. Artificial

Intelligence, 66(1):91–124, 1994.

7. A. Nagai. Df-pn Algorithm for Searching AND/OR Trees and Its Applications. PhD thesis,

The University of Tokyo, 2002.

8. A. Kishimoto, M. Winands, M. Müller, and J.-T. Saito. Game-tree search using proof num-

bers: The first twenty years. ICGA Journal, Vol. 35, No. 3, 35(3):131–156, 2012.

9. R. Dechter and R. Mateescu. AND/OR search spaces for graphical models. Artificial Intel-

ligence, 171(2-3):73–106, 2007.

10. E. C. Freuder and M. J. Quinn. Taking advantage of stable sets of variables in constraint

satisfaction problems. In IJCAI, pages 1076–1078, 1985.

11. K. Kask and R. Dechter. A general scheme for automatic generation of search heuristics

from specification dependencies. Artificial Intelligence, 129(1-2):91–131, 2001.

12. Jurg Ott. Analysis of Human Genetic Linkage. The Johns Hopkins University Press, 1999.

13. M. Fishelson and D. Geiger. Exact genetic linkage computations for general pedigrees.

Bioinformatics, 18(1):189–198, 2002.

14. M. Fishelson, N. Dovgolevsky, and D. Geiger. Maximum likelihood haplotyping for general

pedigrees. Human Heredity, 2005.

15. N. J. Nilsson. Principles of Artificial Intelligence. Tioga Publishing Co, Palo Alto, CA,

1980.

16. A. Nagai. A new depth-first search algorithm for AND/OR trees. Master’s thesis, Department

of Information Science, The University of Tokyo, 1999.

17. S. de Givry, T. Schiex, and G. Verfaillie. Exploiting tree decomposition and soft local con-

sistency in weighted csp. In AAAI, pages 22–27, 2006.

18. K. Kask, A. Gefland, and R. Dechter. Pushing the power of stochastic greedy ordering

schemes for inference in graphical models. In AAAI, pages 54–60, 2011.

19. A. Favier, S. de Givry, A. Legarra, and T. Schiex. Pairwise decomposition for combinatorial

optimization in graphical models. In IJCAI, pages 2126–2132, 2011.

25

26

A Constraint Solving Approach to Tropical
Equilibration and Model Reduction

Sylvain Soliman1, François Fages1, and Ovidiu Radulescu2

1 EPI Contraintes, Inria Paris-Rocquencourt, France
2 University of Montpellier, France

Abstract. Model reduction is a central topic in systems biology and
dynamical systems theory, for reducing the complexity of detailed mod-
els, finding important parameters, and developing multi-scale models for
instance. While perturbation theory is a standard mathematical tool
to analyze the different time scales of a dynamical system, and decom-
pose the system accordingly, tropical methods provide a simple algebraic
framework to perform these analyses systematically in polynomial sys-
tems. The crux of these tropicalization methods is in the computation of
tropical equilibrations. In this paper we show that constraint-based meth-
ods, using reified constraints for expressing the equilibration conditions,
make it possible to numerically solve non-linear tropical equilibration
problems, out of reach of standard computation methods. We illustrate
this approach first with the reduction of simple biochemical mechanisms
such as the Michaelis-Menten and Goldbeter-Koshland models, and sec-
ond, with performance figures obtained on a large scale on the model
repository biomodels.net.

1 Preliminaries on Model Reduction by Tropicalization

We consider networks of biochemical reactions with mass action kinetic laws.
Each reaction is defined as

�

i

αjiAi →
�

k

βjkAk.

The stoichiometric vectors αj ∈ Nn, βj ∈ Nn have coordinates αji and βjk and
define which species are consumed and produced by the reaction j and in which
quantities.

The mass action law means that reaction rates are monomial functions of
the species concentrations xi and reads

Rj(x) = kjx
αj . (1)

where kj > 0 are kinetic constants, αj = (αj
1, . . . ,α

j
n) are multi-indices and

xαj = x
αj

1
1 . . . x

αj
n

n .

27

The network dynamics is described by the following differential equations

dxi

dt
=

�

j

kj(βji − αji)x
αj . (2)

In what follows, the kinetic parameters do not have to be known precisely, they
are given by their orders of magnitude. A convenient way to represent orders is
by considering that

kj = k̄j�
γj , (3)

where � is a positive parameter much smaller than 1, γj is an integer, and k̄j
has order unity. An approximate integer order can be obtained from any real
positive parameter by

γj = round(log(kj)/ log(�)), (4)

where round stands for the closest integer. For instance, if � = 1/10, γj will repre-
sent the logarithmic value of the parameter rounded to the nearest decade. Notice
that in this representation, small quantities have large orders. Furthermore, the
smaller �, the better the separation between quantities of different orders, indeed
lim�→0

ki
kj

= ∞ if γi < γj . We are also interested in the orders of the species

concentrations, therefore we introduce a vector of orders a = (a1, . . . , an), such
that x = x̄�a. Orders a are unknown and have to be calculated. To this aim, the
network dynamics can be described by a rescaled system of ordinary differential
equations

dx̄i

dt
= (

�

j

�µjkj(βji − αji)x̄
αj)�−ai , (5)

where
µj = γj+ < a,αj >, (6)

and <,> stands for the vector dot product. The r.h.s. of each equation in (5) is
a sum of monomials in the concentrations, with positive and negative signs given
by the stoichiometries βji − αji. Generically, these monomials have different or-
ders (given by µj) and there is one monomial that dominates the others. In this
case, the corresponding variable will change rapidly in the direction imposed by
this dominating monomial. However, on sub-manifolds of the phase space, at
least two monomials, one positive and one negative may have the same order.
This situation was called tropical equilibration in [6]. Tropical equilibration is
different from equilibrium or steady state in many ways. Firstly, steady state
means equilibration of all species, whereas tropical equilibration may concern
only one or a few rapid species. Secondly, steady state means that forces are
rigorously compensated on all variables that are at rest, whereas tropical equili-
bration means that only the dominant forces are compensated and variables may
change slowly under the influence of uncompensated, weak forces. Compensation
of dominant forces constrains the dynamics of the system to a low dimensional
manifold named invariant manifold [7, 5]. As discussed in [6], tropical equilibra-
tions encompass the notions of quasi-steady state and quasi-equilibrium from

28

singular perturbation theory of biochemical networks, but are more general. Let
us provide a formal definition of tropical equilibration (see [6] for more details).

Definition 1. Two reactions j, j� are tropically equilibrated on the species i iff:
i) µj = µj� ,
ii) (βji − αji)(βj�i − αj�i) < 0 (meaning that the effects of the reactions j

and j� on the species i are opposite),
iii) µk ≥ µj for any reaction k �= j, j�, such that βki �= αki.

According to (6) and Definition 1, the equilibrations correspond to vectors
a ∈ Rn where the minimum in the definition of the piecewise-affine function
fi(a) = minj(γj+ < a,αj >) is attained at least twice. Tropical equilibrations
are used to calculate the unknown orders a. The solutions have a geometrical in-
terpretation. Let us consider the equality µj = µj� . This represents the equation
of a n− 1 dimensional hyperplane of Rn, orthogonal to the vector αj −αj� :

γj+ < a,αj >= γj�+ < a,αj� > (7)

For each species i, we consider the set of reactions Ri that act on this species,
namely the reaction k is in Ri iff (βk − αk)i �= 0. The finite set Ri can be
characterized by the corresponding set of stoichiometric vectors αk. The set of
points of Rn where at least two reactions equilibrate on the species i corresponds
to the places where the function fi is not locally affine (the minimum in the
definition of fi is attained at least twice). For simplicity, we shall call this locus
tropical manifold [6, 9].

A simple example of biochemical network is the Michaelis-Menten mechanism
of an enzymatic reaction. This network consists of two reactions:

S + E
k1�
k−1

ES
k2→ P + E,

where S,E,ES, P represent the substrate, the enzyme, the enzyme-substrate
complex and the product, respectively.

The system of polynomial differential equations reads:

x�
1 = −k1x1x3 + k−1x2,

x�
2 = k1x1x3 − (k−1 + k2)x2,

x�
3 = −k1x1x3 + (k−1 + k2)x2,

x�
4 = k2x2. (8)

where x1 = [S], x2 = [SE], x3 = [E], x4 = [P].
There are two conservation laws: x2 + x3 = e0 and x1 + x2 + x4 = s0 The

rescaled variables are xi = x̄i�ai , 1 ≤ i ≤ 4, k1 = k̄1�γ1 , k−1 = k̄−1�γ−1 , e0 =
ē0�γe , s0 = s̄0�γs . Let us notice that the last equation can never be equilibrated
because it contains only one monomial. The tropical equilibration equations for

29

the remaining variables read:

γ1 + a1 + a3 = γ−1 + a2,

γ1 + a1 + a3 = min(γ−1, γ2) + a2,

γ1 + a1 + a3 = γ2 + a2,

min(a2, a3) = γe,

min(a1, a2, a4) = γs. (9)

The set of integer orders endowed with the minimum and sum operations is a
semiring, called min-plus algebra [2] where the minimum is noted ⊕ and the sum
⊗. Our tropical equilibration problem is solving a set of polynomial equations
in this semi-ring.

Let us emphasize an important difference between the calculation of tropical
equilibrations and calculation of exact equilibria of systems of polynomial differ-
ential equations. If there are exact conservation laws, the set of exact equilibrium
equations are linearly dependent, therefore one can eliminate some of them from
the system. Because elements in a min-plus semiring do not generally have ad-
ditive inverses, elimination is not automatically possible in systems of tropical
equations. In this case, one should keep all the tropical equilibrium equations
for all the variables and add to them the tropical conservation relations.

2 Example of Golbeter-Koshland Switch

A slightly more complicated network is the Goldbeter-Koshland mechanism. This
consists of two coupled Michaelis-Menten equations. The mechanism is impor-
tant because it plays the role of a switch, allowing the propagation of information
in signal transduction networks. The detailed mechanism is represented by four
mass action reactions

S + Ea

ka
1�

ka
−1

EaS
ka
2→ S∗ + Ea, S

∗ + Eb

kb
1�

kb
−1

EbS
∗ kb

2→ S + Eb.

where S and S∗ are, for instance, the un-phosphorylated and phosphorylated
forms of a substrate, Ea, Eb, are kinase and phosphatase enzymes, respectively.

This mechanism leads to the following system of differential equations:

x�
1 = ka2x5 − ka1x1x3,

x�
2 = kb2x6 − kb1x2x4,

x�
3 = ka−1x5 + kb2x6 − ka1x1x3,

x�
4 = ka2x5 + kb−1x6 − kb1x2x4,

x�
5 = ka1x1x3 − (ka−1 + ka2)x5,

x�
6 = kb1x2x4 − (kb−1 + kb2)x6. (10)

where x1 = [Ea], x2 = [Eb], x3 = [S], x4 = [S∗], x5 = [EaS], x6 = [EbS∗].

30

This system has three conservation laws:

x1 + x5 = Ea
0 ,

x2 + x6 = Eb
0,

x3 + x4 + x5 + x6 = S0. (11)

Equilibrating each equation of (10) and taking into account (11) leads to the
following tropical equations:

γa
2 ⊗ a5 = γa

1 ⊗ a1 ⊗ a3,

γb
2 ⊗ a6 = γb

1 ⊗ a2 ⊗ a4,

(γa
−1 ⊗ a5)⊕ (γb

2 ⊗ a6) = γa
1 ⊗ a1 ⊗ a3,

(γa
2 ⊗ a5)⊕ (γb

−1 ⊗ a6) = γb
1 ⊗ a2 ⊗ a4,

γa
1 ⊗ a1 ⊗ a3 = (γa

−1 ⊕ γa
2)⊗ a5,

γb
1 ⊗ a2 ⊗ a4 = (γb

−1 ⊕ γb
2)⊗ a6,

a1 ⊕ a5 = γa
e ,

a2 ⊕ a6 = γb
e,

a3 ⊕ a4 ⊕ a5 ⊕ a6 = γs. (12)

The corresponding CSP, described in the next section, is solved instantly and
gives the unique solution: a1 = 5, a2 = 4, a3 = 3, a4 = 4, a5 = 7 for parameter
values consistent with the literature: k∗1 = 1000, k∗2 = 150, k∗−1 = 150.

3 Tropical Equilibration as a Constraint Satisfaction
Problem

Given a biochemical reaction system with its Mass-Action kinetics, and a small
�, the problem of tropical equilibration is to look for a rescaling of the variables
such that the dominating positive and negative term in each ODE equilibrate as
per Definition 1, i.e., are of the same degree in �.

Note that there are supplementary constraints related to this rescaling when
some conservation laws exist for the original system. Finding these conservation
laws is another CSP which can be solved efficiently with constraint methods
[8]. Here we will assume that the conservation laws are given in input. In our
prototype implementation, both the computation of conservation laws and the
following equilibration are performed for a given system.

For each original equation dxi/dt, 1 ≤ i ≤ n is introduced a variable ai ∈ Z
that is used to rescale the system by posing xi = �ai x̄i. These are the variables
of our CSP. Note that they require a solver handling Z like for instance SWI-
Prolog [11, 10] with the clpfd library by Markus Triska.

The constraints are of two kinds. For each differential equation that should
be equilibrated is a list of positive monomials M+

i , and a list of negative mono-
mials M−

i . The degrees in � of all these monomials are integer linear expres-
sions in the ai. Now, to obtain an equilibration one should enforce for each i

31

that the minimum degree in M+
i is equal to the minimum degree in M−

i . This
will ensure that we find two monomials (i of Definition 1) of opposite sign (ii)
and of minimal degree (iii). This corresponds to the first six tropical equations
of (12). We will see how they can be implemented with reified constraints, but
for now, let us assume a constraint min(L, M) that enforces that the FD variable
M is the minimum value of a list L of linear expressions over FD variables. We
have in our CSP, for each 1 ≤ i ≤ n, min(PositiveMonomialDegrees, M) and
min(NegativeMonomialDegrees, M).

The second kind of constraint comes from conservation laws. Each conserva-
tion law is an equality between a linear combination of the xi and a constant ci.
By rescaling, we obtain a sum of rescaled monomials equal to �log(ci)/ log(�)c̄i.
We want this equality to hold when � goes to zero, which implies that the
minimal degree in � in the left hand side is equal to (the round of) the de-
gree of the right hand side. Since once again the degrees on the left are lin-
ear combinations of our variables ai, this is again a constraint of the form:
min(ConservationLawDegrees, K) where K is equal to round(log(ci)/ log(�)).
This corresponds to the last three tropical equations of (12).

Furthermore, if the system under study is not at steady state, the minimum
degree should not be reached only once, which would lead to a constant value
for the corresponding variable when � goes to zero, but at least twice. This is the
case for the example treated in [5]. The constraint we need is therefore slightly
more general than min/2: we need the constraint min(L, M, N) which is true
if M is smaller than each element of L and equal to N elements of that list. Note
that using CLP notation, we have:

min(M, L) :- C#>=1, min(M, L, C).

In order to enforce that the minimum is reached at least a required num-
ber of times, one obvious solution is to try all pairs of positive and negative
monomials and count the successful pairs [7]. However, this is not necessary,
the min(L, M, N) constraint directly expresses the cardinality constraint on
the minimums. and can be implemented using reified constraints to propagate
information between L, M and N in all directions, without enumeration. Using
SWI-Prolog notations, the implementation of min/3 by reified constraints is as
follows:

min([], _, 0).

min([H | T], M, C) :- M#=<H, B #<==> M#=H, C#=B+CC ,

min(T, M, CC).

This concise and portable implementation will probably improve when the
minimum and min_n global constraints are available (see [1] for a reference).
However it already proves very efficient as demonstrated in the next section.

32

4 Computation Results on Biomodels.net

To benchmark our approach, we applied it systematically to all the dynamical
models of the BioModels1 repository [4] of biological systems, with � set arbi-
trarily to 0.1. We used the latest release (r24 from 2012-12-12) which includes
436 curated models.

Among them, only 55 models have non-trivial purely polynomial kinetics (ig-
noring events if any). Our computational results on those are summarized in the
following table, where the first column indicates whether a complete equilibra-
tion was found, and the times are in seconds.

Found # models Variables (avg/min/max) Time (avg/min/max)
yes 23 17.348/3/ 86 0.486/0.004/2.803
no 32 17.812/1/194 0.099/0.000/1.934

We managed to avoid timeouts by using an iterative domain expansion: the
problem is first tried with a domain of [−2, 2], i.e., equilibrations are searched by
rescaling in the 10−2, 102 interval. If that fails, the domain is doubled and the
problem tried again (until a limit of 10−128, 10128). This strategy coupled with
a domain bisection enumeration (bisect option in SWI-Prolog) allowed us to
gain two orders of magnitude on the biggest models.

Only one of the models (number 002) used values far from 0 in the equili-
bration (up to �40) and has no complete equilibration if the domain is restricted
to [−32, 32]. This is because all kinetics are scaled by the volume of the com-
partment, which in that case was 10−16, translating the search accordingly. We
thus do not believe that enlarging the domains even more would lead to more
equilibrations. Nevertheless, choosing a smaller � might increase the number of
equilibrations.

18 of the 23 models for which there is a complete equilibration are actually
underconstrained and appear to have an infinity of such solutions (typically
linear relations between variables). For the 5 remaining ones, we computed all
complete equilibrations:

Model # equilibrations Total time (s)
BIOMD0000000002 36 109
BIOMD0000000122 45 291
BIOMD0000000156 7 0.008
BIOMD0000000229 7 0.7
BIOMD0000000413 29 3.3

5 Discussion

One of the limits of this approach, is that it is not well suited to equilibration
problems with an infinite number of solutions. For those, symbolic solutions
depending on free parameters are necessary, as done in [6].

1 http://biomodels.net

33

It is also possible to reduce a system using its conservation laws, and to apply
tropical equilibration directly on the reduced system. However, the resulting
equilibrations might be slightly different, apparently due to the possible loss of
positivity of certain variables. We want to investigate this question further.

In many cases, it makes sense biologically to only look for partial equilibra-
tions. Strategies to decide when such decision has to be made remain unclear.
Nevertheless the framework of partial constraint satisfaction and more specif-
ically Max-CSP [3] would allow us to easily handle the maximization of the
number of equilibrated variables.

In this paper we discussed only the calculation of the tropical equilibrations
and of the unknown orders of the variables. Once the orders of the variables are
known, the rapid variables can be identified and the system reduced to a simpler
one. The details of the reduction procedure, involving pruning of dominated
terms and pooling of fast variables into fast cycles will be presented elsewhere.
A simple reduction procedure, involving only pruning is described by Theorem
3.6 of [6].

Acknowledgements. This work has been supported by the French ANR Bio-
Tempo, CNRS Peps ModRedBio, and OSEO Biointelligence projects.

References

1. N. Beldiceanu, M. Carlsson, S. Demassey, and T. Petit. Global constraints catalog.
Technical Report T2005-6, Swedish Institute of Computer Science, 2005.

2. G. Cohen, S. Gaubert, and J.P. Quadrat. Max-plus algebra and system theory:
where we are and where to go now. Annual Reviews in Control, 23:207–219, 1999.

3. Eugene C Freuder and Richard J Wallace. Partial constraint satisfaction. Artificial
Intelligence, 58:21–70, 1992.

4. Nicolas le Novère, Benjamin Bornstein, Alexander Broicher, Mélanie Courtot,
Marco Donizelli, Harish Dharuri, Lu Li, Herbert Sauro, Maria Schilstra, Bruce
Shapiro, Jacky L. Snoep, and Michael Hucka. BioModels Database: a free, cen-
tralized database of curated, published, quantitative kinetic models of biochemical
and cellular systems. Nucleic Acid Research, 1(34):D689–D691, January 2006.

5. Vincent Noel, Dima Grigoriev, Sergei Vakulenko, and Ovidiu Radulescu. Tropical
geometries and dynamics of biochemical networks application to hybrid cell cycle
models. In Jérôme Feret and Andre Levchenko, editors, Proceedings of the 2nd
International Workshop on Static Analysis and Systems Biology (SASB 2011),
volume 284 of Electronic Notes in Theoretical Computer Science, pages 75–91.
Elsevier, 2012.

6. Vincent Noel, Dima Grigoriev, Sergei Vakulenko, and Ovidiu Radulescu. Tropical-
ization and tropical equilibration of chemical reactions. arXiv:1303.3963, in press
Contemporary Mathematics, 2013.

7. O. Radulescu, A.N. Gorban, A. Zinovyev, and V. Noel. Reduction of dynamical
biochemical reaction networks in computational biology. Frontiers in Bioinformat-
ics and Computational Biology, 3:131, 2012.

8. Sylvain Soliman. Invariants and other structural properties of biochemical models
as a constraint satisfaction problem. Algorithms for Molecular Biology, 7(15), May
2012.

34

9. O. Viro. From the sixteenth Hilbert problem to tropical geometry. Japanese
Journal of Mathematics, 3(2):185–214, 2008.

10. Jan Wielemaker. SWI-Prolog 6.3.15 Reference Manual, 1990–2013.
11. Jan Wielemaker, Tom Schrijvers, Markus Triska, and Torbjörn Lager. SWI-Prolog.

Theory and Practice of Logic Programming, 12(1-2):67–96, 2012.

35

36

Optimizing the reference population in a

genomic selection design

Jean-Michel Elsen1, Simon de Givry2, George Katsirelos2, and Felicien
Shumbusho1

1 SAGA, UR 631, INRA, F-31320 Castanet Tolosan, France
2 MIA-T, UR 875, INRA, F-31320 Castanet Tolosan, France

{Jean-Michel.Elsen,degivry,george.katsirelos,Felicien.Shumbusho}@
toulouse.inra.fr

Abstract. In genomic selection, when candidate animals for reproduc-
tion are selected on an estimate of their breeding value from genomic
information (using Single Nucleotide Polymorphims (SNP) chips), it is
needed to build a reference population whose members are both geno-
typed on the SNPs and phenotyped for the economical trait(s) to be im-
proved. We studied, with numerical simulations of such genomic selection
plan, how to optimize the design of this reference population. The prob-
lem is summarized as minimizing a quadratic function on Boolean vari-
ables with a cardinality constraint. Integer linear/quadratic/constraint
programming and weighted Max-SAT and CSP solvers are compared on
a few examples.

1 Introduction

Thanks to the discovery of very abundant Single Nucleotide Polymorphisms
(SNP) and availability of high throughput genotyping technologies, genomic se-
lection, as described by [8] more than ten years ago, became realistic and rapidly
turned to be the new standard in Dairy cattle breeding schemes [16]. Its appli-
cation to other species is still a matter of discussion, as described for instance by
[18] in pig or [17] in sheep. Genomic selection schemes comprise two steps. The
estimation step, performed from phenotypes and genotypes recorded in a refer-
ence population, provides estimations of SNPs effects on the quantitative trait
of interest. Different models were proposed for these estimations, the simplest,
Genomic Best Linear Unbiased Prediction (GBLUP), modeling the performance
as the sum of fixed nuisance effects and all SNPs random effects with a prior in a
Gaussian distribution of known variance [8]. The selection step comprises an es-
timation of Genomic Breeding Values (GBV) merging the genotypic information
about each candidate and the SNP effects previously estimated.

Amongst other factors, the efficiency of genomic selection largely depends on
the design of the reference population [1, 11]. There are increasing evidence that
closer the reference population to the selected population is, more precise the
genomic evaluation will be. As an example, between breeds designs with SNPs
estimated in a breed and selection candidates belonging to another breed (e.g.
Jersey and Holstein breeds in dairy cattle) are efficient only with very dense
SNP chips [14].

37

The present work aims at providing a tool for optimizing the reference pop-
ulation design. Populations displaying realistic linkage disequilibrium structures
were simulated. Efficiency of different reference population designs were evalu-
ated from the mean correlation between true and GBLUP estimated breeding
values. As in [13], this criterion was used as an objective function to be maxi-
mized given a constraint of the reference population size. This paper describes
a new approach to perform this optimization using a Taylor approximation in
the framework of integer linear/quadratic/constraint programming and weighted
Max-SAT/CSP.

2 The genomic selection design problem

The phenotyped population has np individuals. Among them, we want to select
nr individuals, forming the reference population, to be genotyped on m markers.
The candidate population has nc individuals, different of those in the phenotyped
population. These candidate individuals are assumed to be already genotyped.

We assume a GBLUP linear mixed model [19] for the observed phenotypes
of the reference population with the genetic effects modeled as random effects
(and no fixed effects for the purpose of this study). In matrix notation, we have:

y = Xq + e

where y = (y1, . . . , ynr) is the column vector of observed (single value) phe-
notypes for the reference population, X = (∀l ∈ [1, nr], ∀i ∈ [1,m] xli) the
matrix of recentered genotypes for the reference population with nr rows and m

columns, q = (q1, . . . , qm) is the column vector ofm random genetic effects, and e

is a vector of independent and identically distributed random error terms repre-
senting an environmental deviation. For each genotype, we have xli = ali − 2fi,
where ali ∈ {0, 1, 2} is the number of alleles Ai possessed by individual l at
marker i (having two possible alleles Ai, Bi), and fi is the frequency of Ai in the
population.

q and e follow a normal distribution with zero mean and different variances:

∀i ∈ [1,m], qi ∼ N (0,σ2
q) and e ∼ N (0,σ2

e). We denote λ = σ2
e

σ2
q
, a known

parameter value in our simulation. It can be shown that λ is related to heritability

h2 of the observed phenotypes: λ =
(1−h2)2

�m
i fi(1−fi)

h2 .
The estimation of the random genetic effects q̂ = (q̂1, . . . , q̂m) is obtained by

the following formula [19]:

q̂ = (XT
X + λI)−1

X
T
y

We define the quality of this estimation on the candidate population by
the mean square Pearson correlation r2g,ĝ = 1

nc

�nc

k r2gk,ĝk
, by marginalizing the

phenotypes, where gk = wkq is the genotypic value of individual k and ĝk = wk q̂

its estimate, with wk = (wk1, . . . , wkm) is the row vector of recentered genotypes
of individual k in the candidate population.

38

Using standard calculus we get:

r
2
gk,ĝk =

cov2(gk, ĝk)

var(gk)var(ĝk)
=

var(ĝk)

var(gk)
= 1− λ

wk(XTX + λI)−1wT
k

wkwk
T

Our goal is to maximize the quality of the estimation, that is to minimize:

D(X) = λ

nc�

k

wk(XTX + λI)−1wT
k

wkwk
T

= λ

nc�

k

w̃k(X
T
X + λI)−1

w̃
T
k

with ∀k ∈ [1, nc], ∀i ∈ [1,m] w̃ki =
wki√�m
j w2

kj

, the normalized genotypes in the

candidate population.
For m = 2, we have:

D(X) = λ

nc�

k

(w̃k1, w̃k2)(X
T
X + λI)−1(w̃k1, w̃k2)

T

= λ

nc�

k

w̃2
k1(v2 + λ) + w̃2

k2(v1 + λ)− 2w̃k1w̃k2c

(w̃2
k1 + w̃2

k2)((v1 + λ)(v2 + λ)− c2)

with v1 =
�nr

l x2
l1, v2 =

�nr

l x2
l2, and c =

�nr

l xl1xl2.
For the general case, we will approximate the matrix inversion by using a

Taylor approximation. In the case of a Taylor approximation of order 1, we
have:

D(X) = λ

nc�

k

w̃k(X
T
X + λI)−1

w̃
T
k

=
nc�

k

w̃k(
XTX

λ
+ I)−1

w̃
T
k

≈
nc�

k

w̃k(I −
XTX

λ
)w̃T

k

≈
nc�

k

m�

i

w̃
2
ki −

1

λ

nc�

k

m�

i

w̃ki

m�

j

w̃kj

nr�

l

xlixlj

We can rewrite this objective function by introducing Boolean variables δl ∈
{0, 1} for all individuals in the phenotyped population (l ∈ [1, np]). We denote zli
the recentered genotype of individual l at marker i in this population (whereas
xli is on the reference population).

39

We have:

D(X) ≈
nc�

k

m�

i

w̃
2
ki −

1

λ

nc�

k

m�

i

w̃ki

m�

j

w̃kj

np�

l

δlzlizlj

D(X) ≈ D1(X) =
nc�

k

m�

i

w̃
2
ki

� �� �
a

− 1

λ

np�

l

nc�

k

�
m�

i

w̃kizli

�2

� �� �
bll

δl

In the case of a Taylor approximation of order 2, we have:

D(X) ≈ D2(X) =
nc�

k

w̃k(I −
XTX

λ
+

(XTX)2

λ2
)w̃T

k

=
nc�

k

m�

i

w̃
2
ki −

1

λ

nc�

k

m�

i

w̃ki

m�

j

w̃kj

nr�

l

xlixlj

+
1

λ2

nc�

k

m�

i

w̃ki

m�

j

w̃kj

m�

h

(
nr�

l

xlixlh)(
nr�

l

xlhxlj)

=
nc�

k

m�

i

w̃
2
ki −

1

λ

nc�

k

m�

i

w̃ki

m�

j

w̃kj

np�

l

δlzlizlj

+
1

λ2

nc�

k

m�

i

w̃ki

m�

j

w̃kj

m�

h

(

np�

l

δlzlizlh)(

np�

o

δozohzoj)

Finally we reorganize the terms depending on the different combinations of
δl variables.

D2(X) = a− 1

λ

np�

l

bllδl +
1

λ2

np�

l

np�

o

�
m�

h

zlhzoh

�


nc�

k

�
m�

i

w̃kizli

�


m�

j

w̃kjzoj









� �� �
blo

δlδo

= a− 1

λ

np�

l

bllδl +
1

λ2

np�

l

np�

o

�
m�

h

zlhzoh

�
blo

� �� �
clo

δlδo

To conclude we are going to minimize a quadratic objective function with
np(1 + np) terms, np Boolean variables (δl ∀l ∈ {1, . . . , np}), and an additional
linear cardinality constraint

�np

l δl = nr. Note that the time for computing
the objective function coefficients is already O(n2

pncm). Depending on the size
of this minimization problem, it can be solved by complete search methods
(e.g., best-first or depth-first Branch and Bound) or by local search methods
(e.g., simulated annealing or Tabu search) in the framework of integer lin-
ear/quadratic/constraint programming and weighted Max-SAT/CSP.

40

3 Integer linear/quadratic/constraint programming

models

We add n2
p extra variables γlo in order to linearize the quadratic objective func-

tion. For every pair of Boolean variables (δl, δo), there is a Boolean variable γlo

that is equal to 1 iff δl = δo = 1. We have the following 0/1 linear programming
(01LP) formulation:

min

np�

l

np�

o

cloγlo − λ

np�

l

bllδl

s.t.

np�

l

δl = nr

δl + δo ≤ 1 + γlo (∀l ∈ {1, . . . , np}, o ∈ {1, . . . , np})
γlo ≤ δl (∀l ∈ {1, . . . , np}, o ∈ {1, . . . , np})
γlo ≤ δo (∀l ∈ {1, . . . , np}, o ∈ {1, . . . , np})

By removing the last three inequations and replacing γlo by δl ∗ δo, we get
a 0/1 quadratic programming (01QP) formulation. The same 01QP formulation
can be used by constraint programming (CP) languages such as MiniZinc [6].
By removing the cardinality constraint, we get a pure boolean quadratic opti-
mization (BQO) formulation.

4 Weighted CSP and weighted Max-SAT models

A Weighted Constraint Satisfaction Problem (WCSP) [7] P is a triplet P =
(X,F, k) where X is a set of variables and F a set of cost functions. Each variable
x ∈ X has a finite domain of values that can be assigned to it. A cost function
f(S) ∈ F , with scope S a sequence of distinct variables of X, is a function which
associates to every assignment t of its variables a positive integer in [0, k] where
k is a maximum integer cost used for representing forbidden assignments.

The Weighted Constraint Satisfaction Problem is to find a complete assign-
ment t minimizing the total cost W =

�
f(S)∈F f(t[S]) where t[S] denotes the

projection of t over variables S. This optimization problem has an associated
NP-complete decision problem.

The genomic selection cost minimization problem hasX = {δ1, . . . , δnp , x1, . . . , xnp+1},
all δl (resp. xl) domains are equal to {0,1} (resp. [0, nr]), F = {f(δl) ∀l ∈
{1, . . . , np}} ∪ {f(δl, δo) ∀l × o ∈ {1, . . . , np}2, l �= o} ∪ {f(x1), f(xnp+1)} ∪
{f(xl, δl, xl+1) ∀l ∈ {1, . . . , np}}, and k = +∞.

We define:

∀l ∈ {1, . . . , np} f(δl) = �0.5 +M(λbll(1− δl) + cllδl)� if cll ≥ 0

41

= �0.5 +M(λbll − cll)(1− δl)� if cll < 0

∀l × o ∈ {1, . . . , np}2, l �= o f(δl, δo) = �0.5 +Mcloδlδo� if clo ≥ 0

= �0.5 +Mclo(δlδo − 1)� if clo < 0

f(x1) = 0 if x1 = 0

f(x1) = k if x1 �= 0

f(xnp+1) = 0 if xnp+1 = nr

f(xnp+1) = k if xnp+1 �= nr

∀l ∈ {1, . . . , np} f(xl, δl, xl+1) = 0 if xl + δl = xl+1

= k if xl + δl �= xl+1

with M a large value used to convert real numbers into integers (rounding to
the nearest integer). We have W � D2(X) + C, where C is a positive con-
stant shift value used in order to keep all cost functions positive. Cost functions
f(xl, δl, xl+1) are used to decompose the cardinality constraint

�np

l δl = nr

into an equivalent set of low arity cost functions, by introducing extra counting
variables {x1, . . . , xnp+1}.

By removing the part for encoding the cardinality constraint, we get a for-
mulation ready for Max-SAT solvers.

5 Preliminary results

5.1 Simulation of genomic data

A population with a linkage disequilibrium (LD) extent comparable to one found
in a real sheep population (Manech Tête Rousse breed) was simulated with the
QMSim software [15]. For that, a historical population of 20, 000 individuals was
simulated for 1, 050 generations by considering an equal number of individuals
from both sexes, discrete generations, random matings, no selection and no mi-
gration to create an initial LD, and establish a mutation-drift equilibrium state.
For the first 1, 000 generations, the population size was decreased to 2, 000 indi-
viduals and then increased to 16, 000 individuals within the last 50 generations
to create a bottleneck and eventual decrease in effective population size as known
in domestic animals. Furthermore, 15, 000 females and 350 males from the last
historical generation were used as founders of the selected population. From the
founder population, 10 overlapping generations of selection (with 20% and 30%
replacement rate for females and males, respectively) and random mating were
simulated as contemporary born animals. For the purpose of this study, females
from generations 8 and 9 served as the phenotyped population, i.e., np ≤ 20, 928,
where to select the reference population, and males from generation 10 were used
as the candidate population, i.e., nc ≤ 10, 453. The simulated genome consisted
of m = 10, 000 SNP markers, equally spaced across 5 chromosomes of 100 cM
each and 2.5 ∗ 10−5 mutation rate per marker.

42

5.2 Comparison of 01LP, 01QP, 01BQO, CP, Max-SAT, WCSP

solvers

We compare the models described in Section 3 and 4, in terms of CPU-time, for
solving the Taylor approximation of order 2. We vary the problem size np from 20
to 200, and experiment with different ratios nr

np
from 0.25 to 0.5. We also compare

with an unconstrained model where the cardinality constraint
�np

l δl = nr has
been discarded.

We compare the 01LP solver SCIP (version 1.2.0), the 01LP and 01QP solver
IBM ILOG cplex (version 12.4.0.0), the semidefinite programming based BQO
tool BiqMac [12], the pseudo-Boolean solvers clasp (version 2.0.4) and SAT4J
(version 2.3.4), the CP solver mistral (version 1.3.40), the Max-SAT solvers
minimaxsat [5] and maxhs [3] (both using the tuple encoding as described in [2]),
all solvers using default options, and the WCSP solver toulbar2 (version 0.9.63)
using default options except an initial limited discrepancy search phase [4] with
a maximum discrepancy of 2 (option -l=2 and no initial upper bound). SCIP,
toulbar2, and mistral are accessed via the Python multi-solver modeling in-
terface offered by NumberJack4. All real value coefficients in the models are
multiplied by M = 0.01 and rounded to the nearest integer, ensuring complete-
ness of the solvers. We measured the search effort for finding the optimum and
proving optimality as reported in Table 1.

For the smallest instances (np ∈ [20, 100]), the quadratic programming solver
QP/cplex and the semidefinite programming based boolean quadratic optimiza-
tion tool BiqMac, used in the unconstrained case only, clearly dominate the other
solvers. For the largest instances (np ∈ {200}), all the approaches failed to solve
the problem in less than 10 hours.

In order to solve large problems (up to np = 200), we use a two-step proce-
dure. First, we apply a local search method, called ID Walk for Intensification /
Diversification Walk [10], available as a library [9]5 integrated in toulbar2. Due
to its neighborhood structure (changing only one variable assignment per move),
ID Walk can only be applied to the unconstrained problem. We perform 1 run
of ID Walk with 10,000 iterations, selecting at random among 200 candidate
neighbors. The best solution found by the local search method is then used as a
pre-selection of the individuals6 such that the second step is done by a complete
search method (using SCIP) to satisfy the cardinality constraint. The resulting
two-step procedure is called ID Walk&SCIP.

For the smallest instances solved optimally by complete search methods
(np ∈ [20, 100]), ID Walk&SCIP always found the optimum for the unconstrained

3 http://mulcyber.toulouse.inra.fr/projects/toulbar2
4 http://numberjack.ucc.ie/ and http://github.com/eomahony/Numberjack/
tree/fzn.

5 INCOP version 1.1 http://www-sop.inria.fr/coprin/neveu/incop/
presentation-incop.html

6 Either by discarding the remaining unselected individuals if too many individuals
have been selected by the local search method, or by fixing the selected individuals
if they are less than the required number nr.

43

problems. The distance to the optimum increases slightly when the required
number nr is (very) different than the one found for the unconstrained case,
e.g., being up to 34% for np = 100, nr = 50 as reported in Table 2. The over-
all time of the two-step procedure is clearly dominated by its second step, e.g.,
unfinished after 10 hours for np = 200, nr = 100, which means that the pro-
posed approach should scale to larger problems only if nr is close to the optimal
unconstrained number of selected individuals.

Table 1. Time in seconds of complete search methods (−: unsolved after 10 hours,
N/A: non applicable for BiqMac,minimaxsat, and maxhs, which were applied only in the
unconstrained case). For unconstrained instances, the number of selected individuals
(nr) in the optimal solution is given in parentheses.

SCIP cplex QP/cplex BiqMac clasp SAT4J mistral minimaxsat maxhs toulbar2

np nr = 25%
20 0.7 0.3 0.02 N/A 0.01 0.7 1.3 N/A N/A 0.16
40 15.8 6.7 0.51 N/A 16, 452 − − N/A N/A 48.7
60 942.8 1, 089 12.3 N/A − − − N/A N/A −
100 − − 223.2 N/A − − − N/A N/A −
200 − − − N/A − − − N/A N/A −
np nr = 50%
20 2.5 1.0 0.02 N/A 0.8 3.4 19.3 N/A N/A 0.14
40 101.1 22.7 0.65 N/A − − − N/A N/A 77.2
60 − 26, 853 9.3 N/A − − − N/A N/A −
100 − − 1, 031 N/A − − − N/A N/A −
200 − − − N/A − − − N/A N/A −
np nr unconstrained (found nr = (9, 15, 21, 25) resp. for np = (20, 40, 60, 100))
20 1.9 1.1 0.02 0.86 1.1 5.3 19.8 2.1 14.7 0.04
40 94.5 68.3 1.1 13.7 − − − 4, 781 − 5.0
60 − 20, 249 22.4 29.8 − − − − − 11, 062
100 − − 348.1 87.8 − − − − − −
200 − − − − − − − − − −

6 Conclusion

We have presented an optimization problem occuring in the context of genomic
selection design. Finding the optimal reference population can be approximated
by a quadratic minimization problem on Boolean variables with a cardinality
constraint. Preliminary results showed that only quadratic programming solvers
such as cplex and the semidefinite programming based boolean quadratic op-
timization tool BiqMac, in the unconstrained case, are able to solve optimally

44

Table 2. Relative distances between the best solutions found by the local search
method ID Walk followed by SCIP post-processing and by a complete search method
(QP/cplex). CPU-times in seconds for ID Walk and SCIP are given in parentheses
when appropriate.

ID Walk&SCIP
nr/np

np 25% 50% Unconstr.
20 0.17%(0.3 + 0.1) 0%(0.3 + 0.03) 0%(nr = 9)
40 0.32%(0.6 + 0.39) 4.17%(0.6 + 1.17) 0%(nr = 15)
60 0.59%(0.9 + 0.64) 4.56%(0.9 + 9.17) 0%(nr = 21)
100 0%(1.4 + 2.47) 34.2%(1.4 + 18, 684) 0%(nr = 25)
200 14.32%(2.8 + 22, 746) 55.16%(2.8 + 36, 000) 0%(nr = 35)

the Taylor approximation of order 2 for a phenotyped population up to 100 in-
dividuals. Also, performances of all the solvers vary based on the tightness of
the cardinality constraint. These results are useful to assess the quality of local
search methods, which are able to tackle much larger problems. Moreover, we
have shown how to combine a local search and a complete method in a sim-
ple two-step procedure, while degrading the solution quality when the desired
number of selected individuals differs significantly from the local search solution.
More experiments remain to be done to better distinguish the quality of the two
Taylor approximations, and to analyze the performance of local search methods
on realistic datasets (np ≈ 10, 000) and the properties of the resulting reference
population structures.

References

1. Albrecht, T., Wimmer, V., Auinger, H.J., Erbe, M., Knaak, C.: Genome-based
prediction of testcross values in maize. Theor. Appl. Genet. 123, 339–350 (2011)

2. Bacchus, F.: Gac via unit propagation. In: Principles and Practice of Constraint
Programming–CP 2007. pp. 133–147. Springer (2007)

3. Davies, J., Bacchus, F.: Solving maxsat by solving a sequence of simpler sat in-
stances. In: Principles and Practice of Constraint Programming–CP 2011, pp. 225–
239. Springer (2011)

4. Harvey, W.D., Ginsberg, M.L.: Limited discrepency search. In: Proc. of the 14th

IJCAI. Montréal, Canada (1995)
5. Heras, F., Larrosa, J., Oliveras, A.: Minimaxsat: An efficient weighted max-sat

solver. J. Artif. Intell. Res.(JAIR) 31, 1–32 (2008)
6. Marriott, K., Nethercote, N., Rafeh, R., Stuckey, P., de la Banda, M.G., Wallace,

M.: The design of the zinc modelling language. Constraints 13(3), 229–267 (2008)
7. Meseguer, P., Rossi, F., Schiex, T.: Soft constraints processing. In: Rossi, F., van

Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming, chap. 9. Elsevier
(2006)

8. Meuwissen, T.H., Hayes, B.J., Goddard, M.E.: Prediction of total genetic value
using genome-wide dense marker maps. Genetics 157, 1819–1829 (2001)

9. Neveu, B., Trombettoni, G.: INCOP: An Open Library for INcomplete Combina-
torial OPtimization. In: Proc. of CP-03. pp. 909–913. Cork, Ireland (2003)

45

10. Neveu, B., Trombettoni, G., Glover, F.: Id walk: A candidate list strategy with a
simple diversification device. In: CP. pp. 423–437 (2004)

11. Pszczola, M., Strabel, T., Mulder, H., Calus, M.: Reliability of direct genomic val-
ues for animals with different relationships within and to the reference population.
J. Dairy Sci. 95, 389–400 (2012)

12. Rendl, F., Rinaldi, G., Wiegele, A.: Solving Max-Cut to optimality by intersecting
semidefinite and polyhedral relaxations. Math. Programming 121(2), 307 (2010)

13. Rincent, R., Laloë, D., Nicolas, S., Altmann, T., Brunel, D., Revilla, P., Rodŕıguez,
V., Moreno-Gonzalez, J., Melchinger, A., Bauer, E., Schoen, C.C., Meyer, N., Gi-
auffret, C., Bauland, C., Jamin, P., Laborde, J., Monod, H., Flament, P., Charcos-
set, A., Moreau, L.: Maximizing the reliability of genomic selection by optimizing
the calibration set of reference individuals: Comparison of methods in two diverse
groups of maize inbreds (zea mays l.). Genetics 192, 715–728 (2012)

14. de Roos, A., Hayes, B., Spelman, R., Goddard, M.: Linkage disequilibrium and
persistence of phase in holstein-friesian, jersey and angus cattle. Genetics 179(3),
1503–1512 (2008)

15. Sargolzaei, M., Schenkel, F.S.: Qmsim: a large-scale genome simulator for livestock.
Bioinformatics 25, 680–681 (2009)

16. Schaeffer, L.: Strategy for applying genome-wide selection in dairy cattle. J Anim
Breed Genet 123(4), 218–223 (2006)

17. Shumbusho, F., Raoul, J., Astruc, J., Palhiere, I., Elsen, J.: Potential benefits of
genomic selection on genetic gain of small ruminant breeding programs. J Anim
Sci in press (2013)

18. Tribout, T., Larzul, C., Phocas, F.: Efficiency of genomic selection in a purebred
pig male line. J Anim. Sci 12, 4164–4176 (2012)

19. West, B.T., Welch, K.B., Galecki, A.T.: Linear mixed models: A practical guide
to using statistical software. Chapman & Hall/CRC (2007)

46

Soft Pattern Discovery in Pre-Classified Protein

Families through Constraint Optimization

David Lesaint1, Deepak Mehta2, and Barry O’Sullivan2

1 LERIA, Université d’Angers, F-49045 Angers, France
david.lesaint@univ-angers.fr

2 University College Cork, 4C, Cork, Ireland
d.mehta,b.osullivan@4c.ucc.ie

Abstract. A considerable effort has been invested in discovering pat-
terns amongst protein sequences. This paper introduces the notion of soft
pattern to characterize existing classes in a dataset. A soft pattern for a
class is an exclusive set of subsequences, called c-blocks, which are com-
mon to the class and whose embeddings feature consistent mismatches.
Soft patterns are less verbose than regular expressions and are not re-
stricted to be linear as opposed to class signatures produced by multiple
sequence alignment methods. We formalize a general soft pattern com-
putation problem and present two variants enforcing either sequencing
or non-replication of c-blocks in a pattern. We cast these problems into a
lexicographic constraint optimization framework and present a two-stage
procedure to solve the replication-free problem variant.

1 Introduction

Detecting patterns in amino acid sequences is critical to understand the rela-
tionship between the function and structure of proteins. This problem has been
thoroughly investigated in Bioinformatics, notably via multiple sequence align-
ment (MSA) and pattern recognition approaches [1–6]. MSA methods insert gaps
in input sequences (interpreted as amino acid indels) in order to align common
blocks that have a limited amount of mismatch (interpreted as point mutations).
By design, these methods only detect sequences of common blocks which is re-
strictive when analyzing proteins featuring different block orderings. Besides,
MSA does not address the problem of enforcing pattern exclusivity when dealing
with pre-classified sequences. The same applies to pattern recognition methods,
and while the latter are less sensitive to block orderings, they may yield verbose
or loose class signatures.

This paper proposes a constraint optimization approach to detect exclusive
patterns in pre-classified protein families. The key requirements are addressed
separately with constraints which gives the ability to use dedicated algorithms
but also to integrate and reason about other dimensions of the problem (e.g.,
chemico-physical properties). The approach relies on the notion of soft pattern to
accommodate point mutations and variable block orderings. A soft pattern for a
class is an exclusive set of common subsequences where each subsequence features

47

2 David Lesaint et al.

the same point mutations across the class. We call c-blocks such subsequences
and refer to point mutations as hashes. In order to facilitate biological interpre-
tation and limit computational complexity, subsumption (coverage) between the
c-blocks of a pattern is prohibited. Lexical subsumption and overlapping may
also be prohibited to prevent replication or enforce sequencing of c-blocks.

On this basis, we formulate a core soft pattern discovery problem which we
specialize into two different variants. The general problem is to detect exclusive
and coverage-free patterns. The first variant detects replication-free patterns that
are minimally exclusive and maximally refined while the second variant detects
exclusive sequential patterns. All problems incorporate parametric constraints
that bound the slack (i.e., the maximum number of consecutive hashes in c-
blocks) and width of patterns (i.e., the minimum span of c-blocks) in order to
discard degenerate solutions. Note that MSA problems may be cast as particular
cases of the sequential pattern discovery variant.

The replication-free problem variant yields strong class characterisations
since solution patterns are stripped of rendundant c-blocks while the remain-
ing c-blocks cannot be specialized further, nor extended. We restrict our at-
tention to this variant which we model as a lexicographic constraint optimiza-
tion problem (COP). This COP addresses subsequence matching, commonality,
hash-consistency, slack and width bounding, exclusivity, non-coverage and non
equivalence of c-blocks through separate constraints. In particular, exclusivity is
reducible to a set covering problem. The lexicographic objective function prior-
itizes minimum pattern cardinality over length maximality which ensures solu-
tions are minimally exclusive and maximally refined soft patterns. We present
a two-stage procedure to solve this COP. The procedure composes maximal c-
blocks from minimal blocks before computing exclusive solution patterns.

The paper is organized as follows. Sec.2 discusses the notion of soft pattern
and motivates the different pattern discovery tasks. Sec.3 formalizes the problems
and introduces the constraint optimization model for computing replication-
free patterns. Sec.4 presents the two-stage procedure for this problem. Sec.5
concludes. Due to lack of space, we refer the reader to [7] which includes proofs
and presents a declarative implementation in Minizinc [8].

2 Soft Patterns

This section motivates the three pattern discovery problems and introduces the
underlying concepts. Given a dataset composed of classes of protein sequences,
the objective is to characterize a class by a soft pattern. A soft pattern is a
set of c-blocks where a c-block corresponds to a subsequence that is common
to the sequences of the class and whose adjacent characters are separated by
the same number of mismatching characters in each sequence. We call block the
embedding of a c-block in a sequence, and hash any mismatch inside a c-block.
Note that a c-block cannot start nor end with a hash but no further constraint
on hashes are assumed (allowed amino-acid substitutions and c-blocks starting
or ending with hashes are not discussed here). Fig.1 shows a dataset made of

48

Soft Pattern Discovery 3

Class A Class B
protein protein protein protein protein
ACADEEC EECAEA CADA ADAAEEC CAEEC
1234567 123456 1234 1234567 12345

c-block A#A A#A A#A A#A
c-block CA CA CA CA
c-block EEC EEC EEC EEC

Fig. 1. A soft pattern {A#A,CA,EEC} for class A.

two classes A and B. Class A includes proteins ACADECC and EECAEA and a soft
pattern of three c-blocks is shown for it. The first c-block corresponds to the
common subsequence AA with embeddings t1, 3u in the first protein and t4, 6u
in the second, both sharing a hash in second position. This c-block is given
signature A#A where # indicates a hash. The other two c-blocks are CA and EEC.

Beyond subsequence matching, commonality and hash-consistency, a key re-
quirement is that patterns discriminate classes, that is, a pattern for a class
should not match any “foreign” protein (i.e., any protein not in the class). Pat-
tern exclusivity is defined differently based on the constraints one wishes to im-
pose between the c-blocks of a pattern. We consider three constraints, namely,
non-coverage, non-replication and sequentiality. Non-coverage means that no c-
block embedding should contain another in a protein which is legitimate from
biological and computational standpoints. In this case, a pattern is exclusive if
any set of blocks in a foreign protein matching the c-blocks is itself coverage-free.

Optionally, a further restriction is to prohibit c-block replication. A c-block
may indeed be repeated in a coverage-free pattern (i.e., c-blocks with the same
signature) or replicated within larger c-blocks (e.g., a pattern containing AC#A
and C#A). Replication subsumes coverage and determining exclusivity for replica-
tion-free patterns boils down to proving that every foreign protein is incompati-
ble with one c-block. This is illustrated in Fig.1 where the pattern is replication-
free and exclusive to class A since no protein of class B matches its three c-blocks.

Another alternative is to search for patterns whose c-blocks occur in the same
order in each protein of the class. Since block embeddings may be abstracted
as intervals, interval relations (e.g., Allen relations) may be used to characterize
an ordering between blocks. The simplest and most intuitive relation is the
precedence relation which guarantees that intervals do not overlap nor meet.
Exclusivity holds in this case if any set of blocks in a foreign protein matching
the c-blocks cannot be sequenced consistently with the pattern.

Different objectives may be pursued on top of these features. One such ob-
jective is to make patterns minimally exclusive and devoid of redundancy from
a classification viewpoint. Minimal exclusivity is achieved by discarding c-blocks
that do not contribute to making a pattern exclusive (notably, c-blocks that do
not exclude any protein). This is the case for the pattern of Fig.1 since drop-
ping any c-block yields a non-exclusive pattern. It would not be so if class B
did not contain protein CAEEC, A#A being redundant in this case. Another objec-

49

4 David Lesaint et al.

tive is to try refining c-blocks as much as possible by substituting hashes with
matching characters (specialization) or adding matching characters left or right,
possibly introducing new hashes in doing so (extension). The pattern of Fig.1 is
maximally refined in this sense.

Three indicators may also be used to assess pattern quality: slack (maximum
number of consecutive hashes in c-blocks), width (minimum span of c-blocks) and
length (total number of matching characters in the c-blocks). The width of a c-
block is the sum of its slack and length while there is no such correlation for
patterns as increasing the length of a pattern may increase the slack or decrease
the width. Consistently with the need for maximality, preference goes to patterns
with lower slack, greater width or length, all things being equal.

It is challenging though for domain experts to come up with a preference
model aggregating all these features, criteria and objectives. On this basis, we
formulate a general soft pattern discovery problem (SPD) and two variants. The
SPD consists in computing exclusive and coverage-free patterns for a class. Note
that SPD solutions may feature replicated c-blocks. The SPD enforces two para-
metric constraints, namely, an upper bound on slack to discard loose patterns
and a lower bound on width to discard short patterns. The first variant, called
replication-free soft pattern discovery problem, consists in computing SPD solu-
tion patterns that are minimally exclusive, maximally refined and non equivalent
for replication. Such solutions are replication-free and minimal exclusivity boils
down to a minimal set covering problem. The second variant, called sequential
soft pattern discovery problem, consists in searching for sequential SPD solu-
tion patterns. Minimal exclusivity and c-block maximality may conflict under a
precedence ordering which is why neither feature is imposed in this variant.

3 Soft Pattern Discovery Problems

We use the following notations. For n P N, rns denotes the range ti P N | 1 ď i ď
nu, |t| denotes the number of elements of a tuple or a set t and rts denotes the
range r|t|s, ti denotes the i-th element of a tuple t for all i P rts, and fpAq denotes
the image of a function f : A Ñ B (i.e., fpAq “ tfpiq | i P Au). Σ denotes a
finite alphabet and Σ˚ the set of finite strings that are constructed from the
characters of Σ by concatenation. Tuple notations will be used for strings.

A class over Σ is a tuple of strings belonging to Σ˚ and a dataset over Σ is
a tuple of classes over Σ. A string x has length n or is n-long if it consists of n,
not necessarily distinct, characters from Σ. A string y is a substring of a string x
if there exist not necessarily distinct and possibly empty strings v1, v2 P Σ˚ such
that v1yv2 “ x. A k-long string y “ y1 . . . yk is a subsequence of a string x if there
exist k ` 1 not necessarily distinct and possibly empty strings v1, . . . vk`1 P Σ˚

such that v1y1 . . . vkykvk`1 “ x. We denote this fact by y ĺ x. Let y ĺ x,
an embedding of y in x is a strictly increasing function µ : rys Ñ rxs such that
yi “ xµpiq for all i P rys. Note that a subsequence may have multiple embeddings.
A string y is a common subsequence of a class x if y ĺ xi for all i P rxs.

50

Soft Pattern Discovery 5

A block for a string x is a triple xµ, y, xy such that y ĺ x and µ is an
embedding of y in x. We associate to a block b “ xµ, y, xy a hash function
γpbq : rys Ñ r|x| ´ |y|s defined by γpbqp|y|q “ 0 and γpbqpiq “ µpi ` 1q ´ µpiq ´ 1
(1 ď i ă |y|). For instance, CDA is a subsequence of CACDEAC that determines
two blocks, the left-most one C##D#A verifying µprysq “ t1, 4, 6u and γprysq “
t2, 1, 0u. Let b “ xµ, y, xy and b1 “ xµ1, y1, x1y be two blocks, we say that b
and b1 are compatible if y “ y1 and γpbq “ γpb1q. In other words, compatible
blocks embed a common subsequence with identical hashes. Let b “ xµ, y, xy
and b1 “ xµ1, y1, xy be two blocks for the same string x, we say that b covers b1

if µprysq Ě µ1pry1sq and that b replicates b1 if there exists a block b2 for x, not
necessarily distinct from b1, compatible with b1 and covered by b. Coverage is a
particular case of replication. For instance, block ACD covers and replicates the
right-most block CD in string CDACD but only replicates the left-most block CD.

A c-block for a class x is a |x|-tuple t of compatible blocks such that ti “
xµi, yi, xiy for all i P rxs. That is, a c-block determines a common subsequence
in a class whose embeddings have identical hashes. We say that a c-block is
compatible with a block b if its blocks are compatible with b; and that it is
incompatible with a string z if there is no block for z compatible with it. Let t and
t1 be two c-blocks for a class x, we say that t covers t1 (respectively, t replicates
t1), denoted t ě t1 (resp., t ľ t1), if there exists i P rxs such that ti covers t1

i (resp.,
ti replicates t1

i). Replication is a partial order that subsumes coverage which is
itself non-transitive. Both relations preserve incompatibility, i.e., if t ľ t1 and t1

is incompatible with string z then t is incompatible with z. We introduce the
following relations: t ă t1 ô pt ď t1 ^ �pt ě t1qq, t – t1 ô pt ĺ t1 ^ t ľ t1q, and
t ă t1 ô pt ĺ t1 ^ �pt ľ t1qq. ă is a strict partial order as opposed to ă and –
is an equivalence relation (equivalent c-blocks have signatures over Σ Y t#u).

A pattern for a class x is a set of c-blocks for x. We say that a pattern is
compatible with a string z if one can replicate its c-blocks in z without coverage.
Formally, let c be a dataset and p be a pattern for class ci for some i P rcs, p is
compatible with a string z if there exists a set q of blocks for z such that (1) for
all t, t1 P p, t ‰ t1, there exists b P q and b1 P q such that b ‰ b1, t is compatible
with b and t1 is compatible with b1, and (2) for all b, b1 P q, b ‰ b1, b does not
cover b1. If there is no replication in p, it suffices to show that each c-block of p
is compatible with z. We say that p is exclusive to ci wrt. c if for all j P rcs such
that j ‰ i, for all k P rcjs, p is incompatible with cjk . We say that p is minimally
exclusive for a class ci wrt. a dataset c if any pattern strictly included in p is
not exclusive for ci wrt. c.

We denote by λ, σ and ω the length, slack and width functions used for
blocks, c-blocks or patterns. Let b “ xµ, y, xy be a block, λpbq “ |y|, σpbq “
maxiPrys γpbqpiq and ωpbq “ µp|y|q ´ µp1q ` 1. Let t be a c-block, λptq “ λptiq,
σptq “ σptiq and ωptq “ ωptiq where i P rts. Let p be a pattern, λppq “ ř

tPp λptq,
σppq “ maxtPpσptq and ωppq “ mintPp ωptq. Let k P N and x denote a block,
c-block or pattern, we say that x is k-loose if σpxq ď k; x is strict if it is 0-loose;
and x is k-wide if ωpxq ě k. Let l P N and w P N, a c-block t for a class x
such that σptq ď l and ωptq ě w is ăl

w-minimal over x (resp. ăl
w-maximal,

51

6 David Lesaint et al.

ăl
w-minimal, ăl

w-maximal) if there is no c-block t1 for x such that σpt1q ď l,
ωpt1q ě w and t ą t1 (resp., t ă t1, t ą t1, t ă t1).

The soft pattern discovery problem (SPD) consists in determining slack- and
width-bounded patterns that are exclusive and coverage-free. The replication-
free SPD (RSPD) requires that c-blocks be maximal for ăs

w and non equivalent
to prevent replications (non-equivalence may be dropped to allow repetitions).
The sequential SPD (SSPD) requires that c-blocks be consistently and totally
ordered over the class based on the following relation over embeddings: block
b “ xµ, y, xy precedes block b1 “ xµ1, y1, xy if µp|y|q ` 1 ă µ1p1q. Let t and t1 be
two c-blocks over a class x, we say that t precedes t1 if for all i P rxs, ti precedes
t1
i, and that a pattern p is sequential if precedes is a total ordering over p.

Definition 1 (SPD, RSPD, SSPD). Let C be a dataset over an alphabet
A, i P rCs, s P N, and w P N˚. A solution to a SPD xA,C, i, s, wy is an ex-
clusive, coverage-free, s-loose and w-wide pattern for Ci. A solution to a RSPD
xA,C, i, s, wy is a minimally exclusive pattern of ăs

w-maximal and non-equivalent
c-blocks for Ci. A solution to a SSPD xA,C, i, s, wy is a sequential, exclusive,
s-loose and w-wide pattern for Ci.

We propose a lexicographic constraint optimisation model for the RSPD
that computes solution patterns of minimum cardinality and, amongst those, of
maximum length. The model substitutes maximality and minimality constraints
with the requirement that c-blocks be maximal according to the lexicographic
ordering prioritizing minimum cardinality over maximum length.

Lemma 1 (RSPD as a COP). Let P “ xA,C, i, s, wy be a RSPD, Π the set
of patterns for Ci, and p P Π. p is a minimum cardinality solution to P if and
only if it satisfies the following conditions:

1. slack and width bounds: σppq ď s and ωppq ě w;
2. exclusivity: p is exclusive to Ci wrt. C;
3. non-equivalence: for all t P p, u P p s.t. t ‰ u, t fl u;
4. non-coverage: for all t P p, u P p s.t. t ‰ u, �pt ă uq;
5. maximality for ălex: for all q P Π s.t. q satisfies (1-4), �pp ălex qq where

p ălex q iff (|q| ě |p| ñ p|q| “ |p| ^ λpqq ą λppqq) holds true.

The above result generalizes to the case where we include slack minimality as
the least preferred criterion in the lexicographic objective function. Since RSPDs
prohibit replication, the maximum number of solutions to a RSPD is (loosely)
bounded by the maximum number of blocks in the smallest protein of the class
Ci. The following result formulates the bound in the case of 1-loose patterns.

Lemma 2. Let φ “ 1`?
5

2 , ψ “ 1´?
5

2 , n P N and βpnq be the number of 1-loose

blocks for a n-long string. βpnq “ φn`4´ψn`4
?
5

` n ´ 3 and limnÑ8 βpnq “ φn`4
?
5
.

More generally, the number of blocks of slack k that span a string of length
n is the Fibonacci sequence of order k (where each element is the sum of the

52

Soft Pattern Discovery 7

previous k elements). The closed-form for the n-th element of the sequence is

r rn´1pr´1q
pk`1qr´2k s where rs denotes the nearest integer function and r is the limit of
the ratio between successive terms as n increases. r corresponds to the root of
equation x ` x´k “ 2 near to 2 and it approaches 2 as k increases.

4 A Two-Step Approach to Solving (R)SPD

As (R)SPD involves finding a pattern consisting of one or more maximal c-blocks
for a class Ck, we propose a two-step approach where first we compute all the
maximal c-blocks for Ck and then compute an exclusive pattern of minimum
cardinality. We describe these two steps briefly.

Computing maximal c-blocks. To compute the set of maximal c-blocks, we first
compute all blocks of length 2 that are common to the proteins of class Ck. This
is done by first selecting the protein having the minimum size and then verifying
for each valid block of length 2 whether it is common to all the proteins or not.
Once done, we know all the minimal length blocks and their starting positions
in the smallest protein of the class. We then compute all maximal blocks of
the protein by composing the minimal length blocks while ensuring that each
of them is involved in at least one c-block. Finally, we compute the set of all
maximal c-blocks based on the maximal blocks and ensure that none of them
covers another.

Computing optimal patterns. Once we have all the maximal c-blocks, we for-
mulate a constraint optimization problem for computing an optimal pattern,
i.e., an exclusive pattern of minimum cardinality. Let A denote the set of the
maximal c-blocks for class Ck and F denote the set of foreign proteins (i.e., pro-
teins not in Ck). For each protein i P F , we compute the subset of A containing
the maximal c-blocks whose signature is not matched by protein i. This set is
denoted by Ei Ď A. For each combination of a protein i P F and a maximal
c-block j P Ei a Boolean variable xij is created which denotes whether j is used
to exclude i. Another Boolean variable yj is created that denotes whether the
maximal c-block j is part of the pattern or not. For each protein i P F , we want
to select at least one maximal c-block whose signature is not matched by i, i.e.,ř

jPEi
xij ě 1. A maximal c-block is selected if it is used to exclude a protein

i, i.e., yj ě maxiPFxij . The objective is to minimize the number of maximal
c-blocks that are selected for class Ck, i.e., min

ř
jPA yj .

Notice that the formulation is equivalent to that of a minimum set covering
problem. This model only works for RSPD as it does not use the number of
times a c-block signature is matched by a foreign protein to enforce exclusivity.
We remark that it is possible to have a multiple c-blocks with same signature.
Indeed, it is possible that a c-block signature is matched by a foreign protein but
not as many times as there are maximal c-blocks in A sharing this signature. In
this case, the model will consider each of these c-blocks as compatible whereas
they are incompatible as a whole.

53

8 David Lesaint et al.

Let sn be the number of maximal c-blocks associated with a signature s,
and let tcs1 , . . . , csnu Ď A be some permutation of those maximal c-blocks.
For solving SPD, we additionally associate each maximal c-block csj with a
number j, and the constraint that if csj is selected then at least j number of
c-blocks associated with the same signature must be selected. These constraints
are enforced through a set of dependencies.

Our preliminary results using SPD are shown in Table 1 which suggest that
the presented approach is indeed scalable for handling large size instances. We in-
vestigated with two databases: Late Embryogenesis Abundant Proteins (LEAP)
and Small Heat Shock Proteins (sHSP). The number of classes and the total
number of proteins in these classes is mentioned in the columns labelled as
nclasses and nproteins respectively. For LEAP 6 out of 12 classes and for
sHSP 3 out of 23 classes were unsatisfiable as they do not have any exclusive
SPD patterns. The maximum (and the minimum) number of maximal c-blocks,
slack and length of an optimal exclusive patterns associated with the classes
of each database is shown in the columns labelled as cardinality, slack and
length respectively.

Table 1. Results of LEAP and sHSP instances obtained using SPD

name nclasses nproteins #unsat cardinality slack length
LEAP 12 1066 6 5 (1) 4 (0) 13 (4)
sHSP 23 2244 3 10 (1) 25 (0) 20 (4)

5 Conclusion

We have introduced the notion of soft pattern to characterize and discriminate
classes of protein sequences. Three pattern discovery problems have been formal-
ized to prevent c-block coverage, replication or overlapping. We have shown that
minimal exclusion and maximal refinement are compatible objectives when com-
puting replication-free patterns. The principles of a lexicographic constraint opti-
mization model have been laid out and a two-stage procedure has been sketched.
Future work involves carrying out experiments on two existing datasets of un-
structured and highly structured proteins [9–12].

References

1. Gusfield, D.: Algorithms on Strings, Trees and Sequences. Computer Science and
Computational Biology. Cambridge University Press (2008)

2. Seiler, M. et al.: The 3of5 web application for complex and comprehensive pattern
matching in protein sequences. BMC Bioinformatics, pp. 7–144 (2006)

54

Soft Pattern Discovery 9

3. Bailey, T.L. et al.: MEME SUITE: tools for motif discovery and searching. Nucleic
Acids Research, 37:W202W208 (2006)

4. Uversky, V.N., Dunker, A.K.: Understanding protein nonfolding. Biochim. Biophysi.
Acta 1804, pp. 1231–1264 (2010)

5. Grant, C.E., Bailey, T.L., Noble, W.S.: FIMO: Scanning for occurrences of a given
motif. Bioinformatics, vol. 27, pp. 1017–1018 (2011)

6. Dinkel et al.: ELM the database of eukaryotic linear motifs. Nucleic Acids Res.,
vol. 40: D242-D251 (2012)

7. Lesaint, D., Mehta, D., O’Sullivan: Soft Pattern Discovery in Pre-Classified Protein
Families through Constraint Optimization. Technical report (2013)

8. Nethercote, N. et al.: MiniZinc: towards a standard CP modelling language, Princ.
and Pract. of Constraint Programming (CP’07), pp. 529–543, Springer-Verlag (2007)

9. Hunault, G., Jaspard, E.: The Late Embryogenesis Abundant Proteins DataBase.
http://forge.info.univ-angers.fr/~gh/Leadb/index.php (2013)

10. Hunault, G., Jaspard, E.: LEAPdb: a database for the late embryogenesis abundant
proteins. pp. 11–221, BMC Genomics (2010)

11. Jaspard, E., Macherel, D., Hunault, G.: Computational and statistical analyses of
amino acid usage and physico-chemical properties of the twelve late embryogenesis
abundant protein classes. PLoS ONE 7:e36968 (2012)

12. Hunault, G., Jaspard, E.: The Small Heat Shock Proteins Database. sHSPdb. http:
//forge.info.univ-angers.fr/~gh/Shspdb/index.php (2013)

55

56

Kekulé structure enumeration yields unique
SMILES

Martin Mann1 and Bernhard Thiel2

1
Bioinformatics, Department for Computer Science, University of Freiburg,

George-Köhler-Allee 106, 79106 Freiburg, Germany,
2
Institute for Theoretical Chemistry, University of Vienna, Währingerstrasse 17, 1090

Vienna, Austria

mmann@informatik.uni-freiburg.de

Abstract. A standard representation of molecules is based on graphs

where atoms correspond to vertices and covalent bonds are represented

by a number of edges according to the bond order. This depiction reaches

its limitations for aromatic molecules where the aromatic ring can be

encoded by different bond order layouts, i.e. Kekulé structures, since

electrons are shared within the ring rather than fixed to a specific bond.

Thus, several Kekulé structures are possible for aromatic molecules. Here,

we propose a new constraint programming based approach to enumerate

all Kekulé structures for a given molecule. Furthermore, the ambiguity

information derived is used to enable a unique Kekulé-based SMILES

encoding of the molecule independent of any aromaticity detection al-

gorithm. This is of importance, since there is no generally accepted aro-

maticity definition available that covers all cases.

1 Introduction

Molecules are often depicted as undirected graphs representing atoms as vertices
and covalent single, double, or triple bonds by an according number of edges as
given in Fig. 1, known as structural formula. This works well as long as it is pos-
sible to specifically assign electron pairs shared between two atoms to individual
bonds. In that case, a unique graph representation can be given. But the depic-
tion fails as soon as electrons are not uniquely assignable, a phenomenon named
mesomerism. A classic example is benzene shown in Fig. 1 a). Two different
graph representations, i.e. bond assignments, can be given and these were first
identified and introduced by August Kekulé in 1872 [6]. Since that time, such
explicit structural formula for molecules with ambivalent rings (different single-
double-bond assignments) are refered to as resonance or Kekulé structures. In
the following, we will focus only on mesomerism of rings within molecules, other
forms are discussed later. This ambiguity usually poses no problem for most
applications but gets crucial as soon as a unique representation of a molecule is
needed, e.g. within chemical compound databases [2, 5] or when atom mappings
for reactions are to be identified [9].

57

a) b)

Fig. 1. a) The two isomeric structures of benzene identified by Kekulé (taken from [6])

and b) the Kekulé structure of guanine.

Whether or not a molecule gives rise to several Kekulé structures usually
depends on the existence of (hetero) aromatic rings within the molecule. Within
aromatic rings, bond electrons are shared within the ring and no unique single-
double-bond assignment is possible, resulting in multiple Kekulé representations.
The number of Kekulé structures is therefore combinatoric in the number of
ambiguous aromatic rings part of the molecule. It was reasoned that the ther-
modynamic stability of a molecule is to some extent linked to its number of
Kekulé structures [15, 3]. Most algorithms to enumerate Kekulé structures are
based on graph theoretical studies and a lot of work was done in the early 80s.
A thorough review of the early methods is given in [13] on pages 50-52. Therein,
most algorithms were tailored to specific hydrocarbone molecule classes usually
only covering benzene-like ring layouts and conjugations, e.g. [3, 1].

Within this contribution, we introduce a new constraint programming (CP)
based method to enumerate all Kekulé structures for a given molecule. This
encodes all possibibly ambiguouos edges and enumerates all valid bond assign-
ments and thus all Kekulé structures. This is of importance for instance to parse
molecules given in SMILES format [14] (later discussed in detail) or to provide
all Kekulé variants where needed. For instance, we have recently introduced a
CP-based approach for the computation of valid atom mappings for chemical
reactions [8, 9]. Therein, the reaction’s educt and product molecules are mapped
onto each other revealing the bond breakings and formations occuring during
the reaction. To this end, all Kekulé structures of all participating molecules
have to be known and considered, since it is not known in advance, what specific
Kekulé structure participates in the reaction. The approach is generic and not
tailored to specific classes of molecules. As an input a single structural formula
for each molecule has to be provided and all Kekulé structures are enumerated.

Beside the enumeration of Kekulé structures, we use the approach to enable
the generation of unique SMILES strings without the need for aromaticity per-
ception. SMILES is a standard format to represent molecules as strings [14]. The
string is generated from a treelike-decomposition of the molecule, where ring clo-
sures are marked by according number pairs. For instance benzene depicted in
Fig. 1 a) can be represented by [H]C1=C([H])C([H])=C([H])C([H])=C([H])1

when hydrogens are explicitly encoded by [H]. Usually, hydrogens deducable
from the structure are ommited leaving the SMILES C1=CC=CC=C1. Note, this

58

encoding is the same for both benzene Kekulé structures, since a SMILES does
not encode any node indexing.

The SMILES language copes with ring ambiguity by a special treatment of
aromatic rings. Therein, bonds and atoms part of an aromatic ring are given a
special lowercase label marking their ambiguity. It is left to the SMILES parser
to pick one of the encoded Kekulé structures, to enumerate them all, etc. The
benzene example from Fig. 1 would be encoded by c1ccccc1 in contrast to the
Kekulé structure encoding C1=CC=CC=C1 discussed above.

The central problem for the standard SMILES approach is the lack of a decent
definition of aromaticity that covers all cases of aromatic molecules [11]. Further-
more, aromaticity cannot be simply used interchangeably with mesomerism, i.e.
the existence of several Kekulé structures. A simple example is guanine depicted
in Fig. 1 b). Both rings of the molecule are usually assumed to be aromatic. Still
guanine features only a single Kekulé structure and does not show the usual aro-
matic ambiguity. It is therefore generally hard to decide whether or not a ring
within a molecule is aromatic or not and thus if it is to be treated ambiguous
or not, which is central to generate unique SMILES [14]. Within our approach,
we use a variant of the presented CP approach to identify all edges that en-
able ambiguity instead of annotating whole rings. Only these edges are treated
differently in the SMILES generation, which results in a slightly different but
aromaticity-independent SMILES encoding. The new SMILES encoding is only
encoding ambiguity information where needed and results in a general, unique
molecule string encoding.

2 Preliminaries

Given a structural formula of a molecule, it can be represented by an undirected
graph (V,E) with vertex set V representing the atoms of the molecule and edge
set E = { {v, v�} | v, v� ∈ V } representing the covalent bonds between these
atoms. The bond order, i.e. the number of electron pairs shared within the bond,
is given by the input adjacency matrix A where each entry Av,v� ∈ {0, 1, 2, 3}
denotes the according bond order between v and v�. An example is given in
Fig. 2.

!"

!#

!$

!%

!&

!'

()

!*

+,

!"-

A 1 2 3 4 5 6 7 8 9 10
1 1 2
2 1 2
3 2 1
4 1 1 2
5 1 1
6 1 2 1
7 2 1
8 2 1 1
9 2 1
10 1

Fig. 2. An example molecular graph (without hydrogens) with V = {1. . . 10} and the

according adjacency matry A.

59

For such a graph (V,E), we identify the subgraph (V ◦, E◦) covering only
vertices and edges participating in rings since we want to enumerate Kekulé
structures for ring ambiguity. To enumerate all rings, we apply the ring percep-
tion algorithm by Hanser [4], which first removes all vertices with degree one
and successively decomposes the remaining ring structure into single rings in an
iterative fashion. Since triple bonds form very strong and inflexible atom inter-
actions, we ignore all triple bond containing rings. For the example in Fig. 2, the
Hanser algorithm identifies the three rings 1−2−3−4−8−9−1, 4−5−6−7−8−4,
and 1− 2− 3− 4− 5− 6− 7− 8− 9− 1, resulting in V ◦ = {1. . . 9} (leaving out
node 10).

Eventually, each vertex v ∈ V ◦ participates in at least two edges and all
edges {v, v�} ∈ E◦ are single or double bonds, i.e. Av,v� ∈ {1, 2}, that might
give rise to different Kekulé structures. All other “non-ring bonds” are assumed
to be isomorphic between different Kekulé structures. Therefore, the problem
of enumerating all Kekulé structures based on ring ambiguity reduces to the
enumeration of all valid single-double bond assignments of the ring bonds in E◦.

3 Enumerating all Kekulé structures

As introduced above, given the ring-covering subgraph (V ◦, E◦) of a molecule’s
structure graph (V,E), it is sufficient to enumerate all valid single-double bond
assignments for the bonds in E◦. To this end, we formulate a constraint satis-
faction problem as follows. For each edge {v, v�} ∈ E◦, we introduce a variable
Xv,v� with domain Dv,v� = {1, 2}. For each atom vertex v ∈ V ◦, we add a linear
constraint

�
{v,v�}∈E◦ Xv,v� =

�
v�∈V ◦ Av,v� , i.e. the sum over all bond orders

for each atom has to be preserved by any assignment.
The example from Fig. 2 would result in 10 edge variables, e.g. X1,2, X2,3, . . .

and 9 linear constraints, e.g. for vertex 4: X3,4 +X4,5 +X4,8 = 4.
Note, while given here in terms of integer domains that were implemented

using the Gecode library v4.0 [12], an equivalent CSP can be formulated using
Boolean variables and domains. In such a formulation, the boolean encoding
would cover whether or not a bond is e.g. a double bond and the applied linear
constraints would limit the number of double bonds to

�
v�∈V ◦ max(0, Av,v� −1),

i.e. the overall ring bond order minus the number of ring bonds.
Given such a CSP for a certain molecule, we can simply apply a standard first-

fail depths-first-search to enumerate all valid single-double bond assignments
and thus according Kekulé structures. This reveals two Kekulé structures for
the discussed example molecule; both are presented in Fig. 3.

We have applied the procedure to molecules from the ChEBI database [2].
From the 15,944 molecules in the database, we derived a subset of 10,920 ring-
containing molecules for which full atom information was available (68.5% of the
database). For each molecule, we applied the given procedure to enumerate all
Kekulé structures. In Tab. 1, we report the resulting statistics where the dataset
was further clustered according to the number of rings present in a molecule.

60

!

!

!

!

!

!

"

!

#

!

!

!

!

!

!

!

"

!

#

!

Fig. 3. The two Kekulé structures of the molecule depicted in Fig. 2 whereby both

rings are aromatic.

#ambiguous rings #overlaps #Kekulé structures

#rings #mols median mean max median mean median mean max

1 2871 0 0.4 1 0 0 1 1.4 2

2 2275 1 1 2 0 0.4 2 2.0 4

3 2261 2 1.6 3 1 0.9 2 2.5 8

4 1621 0 1.4 4 2 1.9 1 2.7 16

5 806 1 1.7 5 3 3.0 2 3.1 24

6-10 909 0 2.1 9 4 5.7 1 6.7 288

> 10 177 0 3.8 49 27 122.2 1 7.2 256

Table 1. Statistics on the number of ambivalent rings, the number of shared bonds

between rings (#overlaps), and the number of distinct Kekulé structures within the

ChEBI data set clustered by the number of rings per molecule.

When investigating the median of the number of ambiguous rings it becomes
clear that most rings are non-ambiguous (median ∼ 0) while there is on average
at least one ring with ambiguity. Their average number only slightly increases
with the number of rings a molecule features. The median of the number of bonds
shared between rings is given in column #overlaps. Inspecting the numbers, most
molecules in our data set seem to sport individual rings instead of ring fusions
as e.g. for guanine in Fig. 1 b). Only for larger molecules with multiple rings,
fused ring systems become more common.

5,816 molecules (53.3%) show multiple Kekulé structures, highlighting the
need for appropriate ambiguity handling and enumeration. For 3,459 molecules,
all present rings were ambiguous. Table 2 gives statistics on the number of am-
biguous bonds for molecules with multiple Kekulé structures. On average, about
half of all ring participating bonds are ambiguous. This is mainly due to ring
fusions, where e.g. an ambiguous benzene ring is fused with a non-ambiguous
ring. In such a case, all non-shared bonds of the second ring are non-ambiguous
resulting in the presented statistics.

When averaging over the whole ChEBI data set, a “mean ring molecule”
features about 3 rings where one is ambiguous with about 5 ambiguous bonds,
which results in 2-3 Kekulé structures on average. This gives rise to the need for
canonicalization to enable unique molecule representations within databases as
discussed in the next section.

61

#mols #ringBonds

#rings ambi/all mean(ambi) / mean(all)

1 1276/2871 6.0 / 6.0 = 100%

2 1320/2275 6.0 / 11.0 = 54%

3 1506/2261 9.8 / 16.2 = 60%

4 798/1621 11.7 / 21.3 = 55%

5 405/806 12.7 / 25.3 = 50%

6-10 435/909 16.1 / 32.8 = 49%

> 10 76/177 17.2 / 35.4 = 49%

Table 2. Statistics on the number of ambivalent ring bonds (#ringBonds ambi) and

the overall number of bonds participating in rings (#ringBonds all) for all molecules

with at least two distinct Kekulé structures (first number in column #mols vs. overall

number) within the ChEBI data set clustered by the number of rings per molecule.

4 Unique SMILES with ambiguous bond encoding

The previous study on the ambiguity when representing molecules with specific
bond assignments highlights the need for a unique canonical molecule repre-
sentation, e.g. for database lookups etc. As discussed in the introduction, the
SMILES encoding was introduced for this purpose with according canonical-
ization algorithms [14]. Therein, atoms are represented by according standard
abbreviations like “C”, “H”, “Br”, etc. (all starting upper case and enclosed in
brackets if longer than one character), and bonds formed by more than one elec-
tron pair are encoded by the special characters “=“ and “#” for double or triple
bonds. The ambiguity resulting from aromatic rings was handled using special
character encodings for atoms participating in such rings, i.e. using lower case
characters as “c”, “o”, “n”, . . . for the common aromatic-ring atoms “C”, “O”,
“N”, . . . respectively, as discussed for benzene in the introduction. Furthermore,
an aromatic bond label “:” was introduced, which encodes the uncertainty if the
bond is a single or a double bond. This encoding works well for simple standard
cases of aromatic compounds. But the central problem is the decision whether or
not a ring is aromatic or not, a question still not successfully solved in chemistry
[11].

For instance, given the example molecule from Fig. 2. Depending on the
aromaticity annotation, there are various possibilities to encode the molecule:

both rings aromatic : c12ccccc2sc(C)n1
large ring aromatic : c12ccccc2SC(C)=N1
small ring aromatic : c12C=CC=Cc2sc(C)n1
Kekulé: left Fig. 3 : C12C=CC=CC=2SC(C)=N1
Kekulé: right Fig. 3 : C12=CC=CC=C2SC(C)=N1

The SMILES notation thus mixes the problem of defining a unique and com-
pact string represention for molecules with the even harder problem of aromatic-
ity perception. Here, we will try to disentangle the two problems and to provide a

62

solution for the first, namely the generation of unique canonical SMILES without
the need for aromaticity perception.

To this end, we simply fall back to the previous problem of Kekulé structure
ambiguity, which poses the true problem for canonicalization. Currently, such
ambiguity is intrinsically connected with aromaticity in the SMILES encoding,
but there exist many counter-examples as e.g. guanine in Fig. 1 b). In contrast,
we want to encode only for variation where it occurs, i.e. the ambiguous bonds
within rings.

Given the CSP formulation from above, we only perform a constraint prop-
agation until arc-consistency is reached. No search is performed. The bond-
encoding variables Xv,v� that are still unassigned |Dv,v� | > 1 encode for bonds
{v, v�} ∈ E can either be single or double bond, i.e. ambiguous bonds.

Once this subset of ambiguous bonds is identified, we can apply a variant of
the canonical SMILES algorithm from [14], where

1. all atoms are treated non-aromatic (since no aromaticity perception was
done),

2. ambiguous ring-bonds (non-assigned variables) are represented by the label
“:”,

3. non-ambiguous ring-bonds are represented by by single (“-”) or double bond
label (“=”) based on the according variable assignment, and

4. non-ring bonds are labeled according to the initial molecule representation
encoded by the adjacency matrix A with “-”, “=”, or “#” for Av,v� = 1, 2,
or 3, respectively.

Given this special treatment, we can derive unique canonical SMILES without
aromaticity perception using the standard SMILES canonicalization implemen-
tation as e.g. available in the Graph Grammar Library GGL [7].

In Figure 3, only the bonds of the 6-ring given in black are ambiguous
leaving 4 of the 5 bonds of the smaller 5-ring (in gray) unambiguous. This re-
sults in the new non-aromatic but ambiguity-encoding SMILES representation
C12:C:C:C:C:C:1SC(C)=N2 instead of the SMILES with aromaticity annotation
c12ccccc2sc(C)n1, which does not easily reveal the two Kekulé structures and
the source of ambiguity.

5 Future work

The current approach is restricted to mesomerism of molecular ring systems
based on the ambiguity of single-double bond assignments. Still, there are further
sources of mesomerism that result in multiple resonance structures. A common
form is the shift of unbound (valence) electrons of atoms, that define its charge,
to neighbored atoms, which directly results in ambiguity. Another source for
different representations of basically the same molecule is a phenomenon called
tautomerism, where adjacent hydrogens are shifted to neighbored atoms result-
ing in a changed bond order pattern of the molecule. Furthermore, combination

63

of both can occur. Finally, ionizations of some atoms are possible, depending on
the physical conditions. Sayle gives a detailed overview of the problem in [10].

Thus, we are planning to extend the described approach to further cases of
mesomerism to enable a full enumeration of resonance structures for a given
molecule. When applied to the presented ChEBI data set, this might reveal
even stronger abundance of ambiguity when representing molecules as structural
formula.

6 Conclusions

We have introduced a constraint programming based approach to enumerate the
possible Kekulé structures for a molecule that result from ring-mesomerism. The
approach was used to assess the abundance of such ambiguity in the ChEBI data
base, revealing that half of the data set shows at least two Kekulé structures.
Furthermore, it became obvious that this ambiguity results only from a fraction
of the involved ring-bonds.

Given that such ambiguity is problematic when deriving unique molecule rep-
resentations, we have extended the approach to yield canonical SMILES with-
out need for aromaticity perception. The latter was the base for the standard
SMILES approach to identify and deal with ambiguity. Since aromaticity is hard
to define, the fact that not all aromatic rings are ambiguous, and given our
statistics on ambiguous bonds, we proposed an approach that is independent of
aromaticity assignment. To this end, we identify ambiguous bonds using our CP
approach. Only these bonds are treated special during the standard canonical
SMILES generation. Thus, we derive unique graph-based molecule representa-
tions.

References

1. John L. Bergan, Sven J. Cyvin, and Bjorg N. Cyvin. Number of kekulé structures of

single-chain corona-condensed benzenoids (cycloarenes). Chemical Physics Letters,
125(3):218–220, 1986.

2. Kirill Degtyarenko, Paula de Matos, Marcus Ennis, Janna Hastings, Martin

Zbinden, Alan McNaught, Rafael Alcántara, Michael Darsow, Mickaël Guedj, and

Michael Ashburner. ChEBI: a database and ontology for chemical entities of bio-

logical interest. Nucleic Acids Research, 36(suppl 1):D344–D350, 2008.

3. B. Džonova-Jerman-Blažič and N. Trinajstićı. Computer-aided enumeration and

generation of the Kekulé structures in conjugated hydrocarbons. Computers
Chemistry, 6(3):121–132, 1982.

4. T. Hanser, P. Jauffret, and G. Kaufmann. A new algorithm for exhaustive ring

perception in a molecular graph. J. Chem. Inf. Comp. Sci., 36(6):1146–1152, 1996.
5. M. Kanehisa, S. Goto, Y. Sato, M. Furumichi, and M. Tanabe. KEGG for in-

tegration and interpretation of large-scale molecular data sets. Nuc. Acids Res.,
40(Database issue):D109–14, 2012.

6. August Kekulé. Ueber einige Condensationsproducte des Aldehyds. Justus Liebigs
Annalen der Chemie, 162(1):77–124, 1872.

64

7. M. Mann, H. Ekker, and C. Flamm. The graph grammar library - a generic

framework for chemical graph rewrite systems. In Keith Duddy and Gerti Kap-

pel, editors, Theory and Practice of Model Transformations, Proc. of ICMT 2013,
volume 7909 of LNCS, pages 52–53. Springer, 2013. Extended abstract at ICMT,

long version at arXiv http://arxiv.org/abs/1304.1356.

8. M. Mann, H. Ekker, P.F. Stadler, and C. Flamm. Atom mapping

with constraint programming. In R. Backofen and S. Will, editors, Pro-
ceedings of the Workshop on Constraint Based Methods for Bioinformatics
WCB12, pages 23–29, Freiburg, 2012. Uni Freiburg. http://www.bioinf.uni-

freiburg.de/Events/WCB12/proceedings.pdf.

9. M. Mann, F. Nahar, H. Ekker, P.F. Stadler, and C. Flamm. Atom mapping with

constraint programming. In Proceedings of the 19th International Conference on
Principles and Practice of Constraint Programming, CP’13, LNCS. Springer, 2013.

Accepted for publication.

10. Roger A. Sayle. So you think you understand tautomerism? Journal of Computer-
Aided Molecular Design, 24(6-7):485–496, 2010.

11. Amnon Stanger. What is... aromaticity: a critique of the concept of aromaticity-can

it really be defined? Chem. Commun., 0:1939–1947, 2009.
12. Gecode Team. Gecode: Generic constraint development environment, 2013. Avail-

able as an open-source library from http://www.gecode.org.

13. N. Trinajstić. Chemical Graph Theory, volume 1. CRC Press, 1983.

14. D. Weininger. SMILES, a chemical language and information system. 1. Introduc-

tion to methodology and encoding rules. J. Chem. Inf. Comp. Sci., 28(1):31–36,
1988.

15. G. W. Wheland. The number of canonical structures of each degree of excitation

for an unsaturated or aromatic hydrocarbon. J. Chem. Phys., 3(6):356–361, 1935.

65

66

Solving Subgraph Epimorphism Problems using
CLP and SAT

Steven Gay, François Fages, Francesco Santini, Sylvain Soliman

INRIA Paris-Rocquencourt

Abstract. In this work, we compare CLP and SAT solvers on the NP-
complete problem of deciding the existence of a subgraph epimorphism
between two graphs. Our interest in this variant of graph matching prob-
lem stems from the study of model reductions in systems biology, where
large systems of biochemical reactions can be naturally represented by
bipartite digraphs of species and reactions. In this setting, model reduc-
tion can be formalized as the existence of a sequence of vertex, species or
reaction, deletion and merge operations which transforms a first reaction
graph into a second graph. This problem is in turn equivalent to the ex-
istence of a subgraph (corresponding to delete operations) epimorphism
(i.e. surjective homomorphism, corresponding to merge operations) from
the first graph to the second. We show how subgraph epimorphism prob-
lems can be modeled as Boolean constraint satisfaction problems, and we
compare CLP and SAT solvers on a large benchmark of reaction graphs
from systems biology.

1 Subgraph Epimorphisms

Subgraph epimorphisms (SEPI) can be seen as a variant of subgraph isomor-
phism (SISO). Our interest in this particular graph relation comes from reaction
graphs in systems biology:

Definition 1 (Graph). A graph G is a pair G = (V,A), where A ⊆ V × V .

Definition 2 (Reaction Graph). A reaction graph G is a triple G = (V,A, t),
where t : N −→ {s, r} labels the type of nodes: S = t−1(s) is the set of species
nodes, R = t−1(r) is the set of reaction nodes, and A ⊆ S ×R ∪R× S.

Example 1. The reaction graph on the left of Fig. 1 expresses an enzymatic
mechanism, usually noted E +M � F → E + P .

The species are represented here by ellipse nodes: S = {E,M,F, P}. The re-
actions the rectangle nodes:R = {c, d, p}. The arcs areA = {(M, c), (E, c), (c, F),
(d,M), (d,E), (F, d), (p, P), (p,E), (F, p)}.

When reactions are equipped with kinetics and species with concentrations,
it yields a reaction model, which can be simulated. Then simulation can be
compared to real-life data, and the model can be modified so that the simulation
fits the data, which is the final goal.

67

E c F p P

M d

C

M r P

Fig. 1. On the left, an enzymatic mechanism. On the right, the Michaelis-Menten
reduced version.

Modelers are interested in having the simplest model that behaves as the
real-life data, so they apply mathematical reductions to their models.

These reductions induce transformations on the underlying reaction graph,
which can be captured using graph operations:

Example 2. Applying a Michaelis-Menten reduction to the reaction mechanism
on the left in Fig. 1 yields the reaction graph on the right, usually written
M + C → P + C:

Definition 3 (Delete, Merge). Let u, v ∈ V . The graph dv(G) is defined as
(V �, A�), where V � = V \ {v} and A� = A ∩ (V � × V �).

The graph mu,v(G) is defined as (V �, A�), where V � = V \ {u, v} � {uv},
A� = {(su,v(x), su,v(y)) | (x, y) ∈ A}, uv is a fresh symbol, and su,v : [u −→
uv, v −→ uv, x /∈ {u, v} −→ x].

In the case of reaction graphs, vertices can be merged only if they are both
species or both reactions: a reaction can not be merged with a species.

Example 3. In Fig. 1, take the graph on the left. Delete d and F , then merge c

with p. The resulting graph is isomorphic to the graph on the right.

We write G →∗
md G� when a string of delete and/or merge operations from

G yields G�. As strings of delete operations correspond to SISO, strings of
delete/merge operations correspond to SEPI:

Definition 4 (Subgraph Epimorphism). A subgraph epimorphism from G to
G� is a function f : V → V � such that ∀(u, v) s.t. f(u) and f(v) defined, (u, v) ∈
A ⇒ (f(u), f(v)) ∈ A�, f surjective (onto) on V � and A�.

Theorem 1 There exists a subgraph epimorphism from G to G� iff G →∗
md G�.

Example 4. The SEPI corresponding to the example 3 is m : [M −→ M,E −→
C,P −→ P, c −→ r, p −→ r].

Deciding SISO is NP-complete, this is also the case for SEPI:

Theorem 2 ([6]) Deciding the subgraph epimorphism problem is NP-complete.

This results justifies using approaches such as Constraint Programming and SAT
solving to solve SEPI problems.

68

2 Constraint Program

In this section, we describe how to decide the existence of a SEPI between two
graphs using Constraint Programming (CP).

To differentiate mathematical variables and CP variables, we write CP vari-
ables in bold font (as in X opposed to X) ; [a, b, c] denotes the list of the three
elements a, b, c ; π1 and π2 are the first and second projection functions.

Let G and G� be two graphs, with G = (V,A), G� = (V �, A�), and V =
{v1 . . . vn}, A = {a1 . . . ak}, V � = {v�1 . . . v�n�}, A� = {a�1 . . . a�k�}, A�

⊥ = A� �
{(x, y) ∈ (V � ∪ {⊥})2|x = ⊥ ∨ y = ⊥} = {a�1 . . . a�k� , a

�
k�+1 . . . a

�
k�
⊥
}.

2.1 CP Model

The existence of a SEPI from G to G� can be modeled using CP as follows.
Variables are associated with the vertices and edges of G and G� :

– Morphism variables
• Xv for v ∈ V , with D(Xv) = V � ∪ {⊥}.
• Aa for a ∈ A, with D(Aa) = {1, . . . , |A�

⊥|}.
– Antecedent variables

• X�
v� for v� ∈ V �, with D(X�

v�) = V .
• A�

a� for a� ∈ A�, with D(A�
a�) = A.

Constraints to enforce the role of morphism and antecedent variables:

I. Morphism constraints
i. ∀a ∈ A, element(Aa, [π1(a�1) . . .π1(a�k�

⊥
)],Xπ1(a))

ii. ∀a ∈ A, element(Aa, [π2(a�1) . . .π2(a�k�
⊥
)],Xπ2(a))

II. Minimal antecedent constraints
i. ∀v ∈ V, ∀v� ∈ V �,X�

v� = v ⇒ Xv = v�

ii. ∀v ∈ V, ∀v� ∈ V �,Xv = v� ⇒ X�
v� ≤ v

iii. ∀a ∈ A, ∀a� ∈ A�,A�
a� = a ⇒ Aa = a�

iv. ∀a ∈ A, ∀a� ∈ A�,Aa = a� ⇒ A�
a� ≤ a

III. Global surjection constraints
i. gsurjection([Xv1 . . .Xvn], V

�)
ii. gsurjection([Aa1 . . .Aak], A

�)

This model uses reified constraints and the usual element constraint.
It also uses a global constraint gsurjection that works as follows. Let D =

[D1 . . .Dd] be a list of variables and T = [T1 . . . Tt] of sorted list of integers. Let
covered(D, T) = {Ti | ∃j, dom(Dj) = {Ti}} be the elements of T that are taken
by some variable, and committed(D, T) = {Dj | dom(Dj) ⊆ covered(D, T)} be
the variables which can not cover any uncovered variable.

Then gsurjection(D, T) enforces |T |−|covered(T)| ≤ |D|−|committed(D)|.
When all Dj are ground, D has to be a surjection on the elements of T . Imple-
menting a linear time propagator for this constraint is straightforward.

While constraints IIi and IIiii introduce dual variables for surjectivity, con-
straints IIii and IIiv break representation symmetries by choosing minimal an-
tecedents. These constraints are redundant with gsurjection.

69

Proposition 3 The CP model P associated with graphs G,G� has a solution if
and only if there exists a subgraph epimorphism from G to G�.

In order to specialize the CP model to reaction graphs, the domains of reac-
tion (species) node variables can be restricted to reaction (species) nodes.

2.2 Search Strategy

We tried different search strategies, and the best we found is to enumerate first
the A�

a� , then the X�
x� , and finally the morphism variables.

The following proposition sheds some light on this choice:

Proposition 1. The SEPI CP model above yields a solution iff variables (X�
v�)v�∈V �

and (A�
a�)a�∈A� can be successfully instantiated.

Proof. Obviously, if enumerating antecedent variables fails, there is no SEPI
from the source graph to the target graph.

Conversely, if the enumeration on antecedent variables succeeded, then the
corresponding (Xv)v∈V and (Aa)a∈A have singleton domains, thanks to domain-
arc-consistency of element constraints II. The induced subgraph formed by the
source vertices and arcs that correspond to these variables are sufficient to cover
G�, and the morphism constraints I ensure that the variables code a morphism.
Giving the ⊥ value for every remaining morphism variable yields a SEPI from
the source graph to the target graph. ��

Therefore enumerating morphism variables last ensures there will be no back-
tracking on these variables: this could explain the good relative performance of
this strategy.

3 SAT model

Coding problems into SAT instances and using a SAT solver to find whether it is
satisfiable or not is another successful approach to solve NP-complete problems.

A SAT instance can be described as a pair (X, C), where X is a set of
variables, and C is a set of clauses c1 . . . cr with ci =

�
li,j , and finally li,j is

either x or x̄, with x ∈ X. A SAT instance can be described more shortly as a
boolean formula in conjunctive normal form.

In this section, we will describe, for a given SEPI problem (G,G�), an en-
coding of the problem as a CNF. This encoding has been implemented, and the
evaluation will be made in the next section.

The boolean formulae given in this section are transformed into a CNF using
an obvious normalization procedure : implications a → (b ∧ c) are broken into
a → b and a → c, implication a → b is coded in ¬a∨b ; no further transformations
are done. We write clause(f), where f is a boolean function, to denote the clauses
passed to the SAT solver.

We split the description of the coding into two main parts: first how to code
a partial surjective function, then adding graph constraints to code a subgraph
epimorphism.

70

3.1 Partial Surjective Function Coding

A SEPI m from G to G� is also a partial surjective function from V to V �.

Definition 5 (Partial Surjective Function). A binary relation m ⊆ E ×E�

is a partial surjective function if the following conditions are fulfilled:

– ∀x ∈ E, x�
1 ∈ E�, x�

2 ∈ E�, ((x, x�
1) ∈ m ∧ (x, x�

2) ∈ m) ⇒ x�
1 = x�

2
– ∀x� ∈ E�, ∃x ∈ E, (x, x�) ∈ m

The elements x ∈ E do not have to be covered by some (x, x�) ∈ m, hence
the qualifier partial ; we write m(x) = x� when x ∈ E is covered by x�, m(x) = ⊥
when x is not covered.

Variables. m is encoded as a binary relation on V × (V � ∪ {⊥}). The elements
of V � ∪ {⊥} are put in a total order v�0 = ⊥ < v�1 < . . . < v�n� .

- ∀(v, v�) ∈ V × (V � ∪ {⊥}),mv,v� = 1 iff m(v) = v�.
- ∀(v, v�) ∈ V × (V � ∪ {⊥}),m<

v,v� = 1 iff m(v) < v�.

Clauses. The following clauses enforce the mathematical description of the vari-
ables:

I. Left Totality. ∀v ∈ V , clause(
�

v�∈V �∪{⊥} mv,v�)
II. Functionality. ∀(v, v�j) ∈ V × (V � ∪ {⊥}),

i. clause(mv,v�
j
⇒ m<

(v,v�
j+1)

)

ii. clause(m<
v,v�

j
⇒ m<

(v,v�
j+1)

)

iii. clause(m<
v,v�

j
⇒ ¬m(v,v�

j)
)

III. Right Totality. ∀v� ∈ V �, clause(
�

v∈V mv,v�)

The encoding is self-explanatory, except for functionality. Functionality could
be encoded directly as well, with something like:

∀(v, v�1, v�2) ∈ V × (V � ∪ {⊥})2 with v�1 �= v�2, clause(¬(mv,v�
1
∧mv,v�

2
))

This encoding has |V | · |V � ∪ {⊥}|2 clauses, which is a problem in practice.
The coding above, achieved by using the order on |V � ∪ {⊥}| to force the image
of v ∈ V to be minimal, only has O(|V | · |V � ∪ {⊥}|) clauses.

3.2 Subgraph Epimorphism Coding

Let us build on the previous part to constrain the function to represent a SEPI.
Variables. Additional variables are used to constrain SEPI:

- Non deleted arcs. ∀(a, a�) ∈ A×A�,ma,a� iff m(a) = a�.
- Deleted arcs. ∀a ∈ A, is dummy(ma) = 1 iff m(a) = ⊥

Clauses.
- Left Totality on Arcs. ∀a ∈ A, clause(is dummy(ma) ∨

�
a�∈A� ma,a�)

- Right Totality on Arcs. ∀a� ∈ A�, clause(
�

a∈A ma,a�)
- Graph Morphism. ∀((u, v), (u�, v�)) ∈ A×A�,

i. clause(m(u,v),(u�,v�) ⇒ mu,u�)
ii. clause(m(u,v),(u�,v�) ⇒ mv,v�)

71

iii. clause((mv,v� ∧mv,v�) ⇒ m(u,v),(u�,v�))

- Subgraph Morphism. ∀(u, v) ∈ A,

i. clause(is dummy(m(u,v)) ⇒ mu,⊥ ∨mv,⊥)
ii. clause(mu,⊥ ⇒ is dummy(m(u,v)))
iii. clause(mv,⊥ ⇒ is dummy(m(u,v)))

Once again the encoding follows the definition closely. The model can be
specialized to reaction graphs by restricting domains, i.e. by setting mv,v� to
false when v and v� are not of the same type.

3.3 Surjectivity and Sorting Networks

The gsurjection propagation idea can be imitated with boolean clauses. This
improves performance a little. The idea is to introduce minimal antecedents, and
then use cardinality networks to force the number of minimal antecedents to be
greater than the number of targets.

Cardinality networks use boolean sorting networks to have some consistency
using only unit clause propagation.

For a full exposition, [5] compares different approaches to coding integers in
boolean clauses, [2] uses such networks on decompositions of cardinality-related
constraints, [3] shows that Parberry’s odd-even networks behave better than
Batcher’s merge networks for this purposes, [8] efficiently solves MAXSAT by
coding the cardinality part in boolean clauses.

4 Performance Evaluation

We implemented the CLP model using GNU Prolog [4] 1.4.4, and the SAT model
is solved with Glucose [1] 2.2.

To test and compare GNU Prolog and Glucose performance on subgraph
epimorphism problems, some of the System Biology models in the BioModels
repository [9] have been used; in particular, the same models adopted in [7].
A thematic clustering has been accomplished, using information available from
the notes of SBML models. The four most populated classes are: i) mitogen-
activated protein kinase (abbreviated as mapk, 11 models), ii) circadian clock
(circ, 11 models), iii) calcium oscillations (caoscill, 11 models), and iv) cell cycle
(ccycle, 9 models).

In the experiments reported in Tab. 1, the computation time was limited
with a timeout of 20 minutes. Performance has been evaluated on an Intel Core
2 Duo 2.4Ghz processor. The four macro-columns respectively show the number
of intra-class comparisons, the number of relations found between models (i.e.,
of reductions), and the number of no-relations found, and, finally, the number
of no-results (where timeout occurs). Each sub-column respectively reports per-
formance for Glucose, GNU Prolog, and the methods combined together, using
the same timeout for both (20min + 20min).

Clearly, in order to evaluate the two methods, the interesting value is the
number of timeouts: here the efficacy of Glucose can be appreciated, in particular

72

Table 1. Solvers performance collected in 20min.

Class(Files) Relations Nonrelations Timeouts
GNU Glucose Union GNU Glucose Union GNU Glucose Union

mapk (110) 38 38 42 60 63 63 12 9 5
circ (110) 17 37 37 60 73 73 33 0 0

caoscill (110) 38 38 38 72 72 72 0 0 0
ccycle (72) 9 12 12 43 51 51 20 9 9

Table 2. Solvers performance collected in 10s.

Class(Files) Relations Nonrelations Timeouts
GNU Glucose Union GNU Glucose Union GNU Glucose Union

mapk (110) 36 35 41 59 60 60 15 15 9
circ (110) 15 33 33 59 68 68 36 9 9

caoscill (110) 38 38 38 72 72 72 0 0 0
ccycle (72) 9 6 10 42 49 49 21 17 13

on class circ (from 33 no results to nil), but also on class ccycle (from 20 no
results to 9), and, lastly, a marginal improvement on class mapk (from 12 to
9). Class caoscill shows no improvement because it is very easy to match even
with GNU Prolog (0 no results). These results have been further investigated
in detail, discovering that mapk is the only class among the four where the
GNU Prolog set of relations is not a subset of the one found with Glucose.
This difference set (equivalent to 49 → 9, 49 → 11, 49 → 28, 49 → 30) also
corresponds exactly to the difference set of no-results between glucose and GNU
Prolog. From this the reader can deduce that from a merging of GNU Prolog
and SAT implementations, only 4 no-results less on mapk can be gained (which
would correspond to 4 relations more). Nevertheless, it also possible to deduce
that on some models our GNU Prolog version can run more efficiently: in this
case, model 49 is better reduced with GNU Prolog than with SAT.

The lists of comparisons for which no result can be obtained with either SAT
or GNU are respectively, {49 → 146, 146 → 9, 146 → 11, 146 → 28, 146 → 30} on
mapk, and {56 → 7, 56 → 111, 56 → 144, 109 → 7, 109 → 111, 109 → 144, 144 →
111, 144 → 169, 144 → 196} on ccycle. Few of the models seem to represent a
bottleneck, due to the high frequency of the same models in these two lists.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

Timeout (s)

N
o-
so
lu
ti
on

s
(#

)

Fig. 2. No-solutions in GNU Prolog.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

Timeout (s)

N
o-
so
lu
ti
on

s
(#

)

caoscill
mapkcirc
ccycle

Fig. 3. No-solutions in Glucose.

73

Moreover, Tab. 2 shows that both implementations also perform well within
a short timeout of 10 seconds. This is particularly true with our GNU Prolog
implementation (only 7 no-results less over the four classes, from 10sec to 20min),
while more debatable with Glucose (23 no-results less in total). Fig. 2 and 3 show
how the number of no-solutions decreases by increasing the timeout from 1 up
to 10 seconds (GNU Prolog and Glucose respectively).

5 Conclusion

We have compared CLP and SAT approaches for deciding the existence of a
subgraph epimorphism from one graph to another.

The main application is to determine the feasibility of computing model
reduction hierarchies of real-world model repositories. Section 4 has shown the
efficiency of both methods, especially for SAT. In particular, with long timeouts
(e.g., 20 minutes), the results found by solving our CNF model with Glucose
almost totally subsumes those found by solving out CP model with GNU Prolog.

However, our CLP model can be improved by adding global constraints such
as alldifferent on antecedents. In addition, we will refine the notion of reduction
by adding labels on nodes (e.g., on molecular species), in order to only match
related entities; this will also lead to a performance improvement. Moreover, we
are currently working on the notion of maximal common subgraph for SEPI, still
using both a CLP and a SAT model. This can be used to measure a distance
between two biological models.

References

1. Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in modern
sat solvers. In IJCAI, volume 9, pages 399–404, 2009.

2. Christian Bessiere, George Katsirelos, Nina Narodytska, Claude-Guy Quimper, and
Toby Walsh. Decompositions of all different, global cardinality and related con-
straints. In Craig Boutilier, editor, Proceedings of the 21st International Joint Con-
ference on Artificial Intelligence, IJCAI’09, pages 419–424, 2009.

3. Michael Codish and Moshe Zazon-Ivry. Pairwise cardinality networks. In Logic for
Programming, Artificial Intelligence, and Reasoning, pages 154–172. Springer, 2010.

4. Daniel Diaz, Salvador Abreu, and Philippe Codognet. On the implementation of
GNU Prolog. Theory and Practice of Logic Programming, 12(1-2):253–282, 2012.

5. Niklas Eén and Niklas Sörensson. Translating pseudo-boolean constraints into sat.
Journal on Satisfiability, Boolean Modeling and Computation, 2(1-4):1–26, 2006.

6. Steven Gay, François Fages, Thierry Martinez, Sylvain Soliman, and Christine Sol-
non. On the subgraph epimorphism problem. Discrete Applied Mathematics, 2013.
to appear.

7. Steven Gay, Sylvain Soliman, and François Fages. A graphical method for reducing
and relating models in systems biology. Bioinformatics, 26(18):i575–i581, 2010.
special issue ECCB’10.

8. Miyuki Koshimura, Tong Zhang, Hiroshi Fujita, and Ryuzo Hasegawa. Qmaxsat: A
partial max-sat solver system description. Journal on Satisfiability, Boolean Mod-
eling and Computation, 8:95–100, 2012.

9. Nicolas le Novère et al. BioModels Database: a free, centralized database of curated,
published, quantitative kinetic models of biochemical and cellular systems. Nucleic
Acid Research, 1(34):D689–D691, January 2006.

74

Constrained Flux Coupling Analysis

Laszlo David and Alexander Bockmayr

FB Mathematik und Informatik, Freie Universität Berlin
DFG Research Center Matheon

Arnimallee 6, D-14195 Berlin, Germany

Abstract. Constraint-based modeling has become a widely used ap-
proach for the analysis of genome-scale metabolic networks. It includes a
variety of methods such as flux balance analysis (FBA), flux variability
analysis (FVA), or the computation of elementary flux modes (EFM).
Flux coupling analysis (FCA) identifies dependencies between the activ-
ity of reaction fluxes in a metabolic network at steady-state. It can be
used for exploring a large range of biological questions such as network
evolution, gene essentiality, or gene regulation. In this paper, we gener-
alize the concept of FCA by allowing additional linear constraints on the
reactions. We show that these constraints can be modeled as lower and
upper bounds on the reactions of an alternative metabolic network. We
introduce constrained flux coupling analysis (CFCA) and prove that, in
many cases, knowing tight bounds of the reactions uniquely determines
the coupling relationships. Finally, we present a new method to perform
CFCA efficiently.

Keywords: constraint-based modeling, metabolic networks, flux cou-
pling analysis, linear programming

1 Introduction

Constraint-based modeling has become a widely used approach for the analysis of
genome-scale metabolic networks [1, 2]. It includes a variety of methods such as
flux balance analysis (FBA), flux variability analysis (FVA), or the computation
of elementary flux modes (EFM). Flux coupling analysis (FCA) [3] identifies
dependencies between the activity of reaction fluxes in a metabolic network at
steady-state. It can be used for exploring a large range of biological questions
such as network evolution, gene essentiality, or gene regulation.

Given a metabolic network with m metabolites and n reactions, classical
FCA works with the steady-state flux cone C = {v ∈ Rn | Sv = 0, vIrr ≥
0}. Here S ∈ Rm×n is the stoichiometric matrix, Irr ⊆ {1, . . . , n} the set of
irreversible reactions, and v ∈ Rn denotes a (steady-state) flux vector. While
this has found many applications, it turns out that in some cases the concept
of flux cone is too general, describes too many metabolic behaviours, and lacks
certain desired details. With standard FCA, we find a coupling relationship
between two reactions only if these reactions are coupled to each other in all
flux vectors belonging to the cone. Often however, biologists are interested in a

75

Fig. 1. The intuitive interpretation of additional constraints

particular subspace of the flux cone (e.g. the optimal flux space [4]) or would
like to impose additional constraints on the reactions.

In this paper, we generalize the concept of FCA by allowing additional linear
constraints on the reactions. We show that these constraints can be modeled as
lower and upper bounds on the reactions of an alternative metabolic network.
Based on this, we introduce constrained flux coupling analysis (CFCA) and prove
that, in many cases, knowing tight bounds of the reactions uniquely determines
the coupling relationships. Finally, we present a new method to perform CFCA
efficiently.

2 Methods

In constrained FCA, we would like to impose additional linear constraints on the
reactions, which are of the form α1v1+α2v2+· · ·+αnvn ≥ β, with α1, . . . ,αn ∈ R
not all zero, and β ∈ R. For algorithmic reasons, we will realize such a constraint
by considering an alternative metabolic network. It is derived from the original
one by introducing an artificial metabolite m+1 and an artificial reaction n+1.
Every reaction i ∈ {1, . . . , n} for which αi > 0 (resp. αi < 0) will additionally
produce (resp. consume) the metabolite m+1 with stoichiometric coefficient αi.
The reaction n+1 will be an exchange reaction that takes the metabolite m+1
out of the system. The mass-balance equation for metabolite m+1 is thus given
by α1v1 +α2v2 + · · ·+αnvn − vn+1 = 0. The additional linear constraint is now
realized by imposing the lower bound vn+1 ≥ β in the alternative network. The
concept is illustrated in Fig. 1. Assume we start with the metabolic network on
the left and want to impose the additional constraint v2 + v3 ≤ 10. Considering
the network on the right and imposing v6 ≤ 10 will give the desired result. A
similar transformation can also be done for equality constraints, by imposing β
both as a lower and upper bound of vn+1. We conclude that additional linear
constraints may be realized by imposing lower and upper bounds on suitably
defined reactions in an extended network.

76

2.1 Definitions

For a metabolic network with n reactions (possibly after reconfiguration), let L
(resp. U) ⊆ {1, . . . , n} be the set of reactions i for which a finite lower bound
li ∈ R (resp. upper bound ui ∈ R) has been defined. We will consider all flux
vectors in the (steady-state) flux polyhedron P , defined by

P := {v ∈ Rn | Sv = 0, vi ≥ li, for all i ∈ L, vi ≤ uj , for all j ∈ U}. (1)

Note that the standard thermodynamic constraints vIrr ≥ 0 have not been
included here, because irreversible reactions can be defined by having the lower
bound 0. Given the flux polyhedron P , we can construct an associated flux cone
by defining the irreversible reactions. Let IrrP := {i ∈ L | li ≥ 0}. The flux cone

CP associated with P is defined as

CP := {v ∈ Rn | Sv = 0, vi ≥ 0 for all i ∈ IrrP }. (2)

In the special case U = ∅ and li = 0 for all i ∈ L, the flux polyhedron P is equal
to the flux cone C (with Irr = L). However, in general P ⊆ CP holds.

Blocked reactions are defined similarly to classical FCA [3]. Intuitively, these
are the reactions that never participate in a steady-state flux vector.

Definition 1 (Blocked reaction) Given the flux polyhedron P , a reaction i ∈
{1, . . . , n} is blocked in P if vi = 0, for all v ∈ P . Otherwise, i is unblocked

in P .

Next we define the constrained coupling relations.

Definition 2 (Constrained coupling relations) Given the flux polyhedron

P , let i, j be two unblocked reactions in P . The constrained (un-)coupling re-

lationships −→
c
,←→

c
,⇐⇒

c
and �−→

c
are defined by:

– i −→
c

j (equiv. j ←−
c

i) if for all v ∈ P , vi �= 0 implies vj �= 0.

– i ←→
c

j if for all v ∈ P , vi �= 0 is equivalent to vj �= 0.

– i ⇐⇒
c

j if there exists λ �= 0 such that for all v ∈ P, vj = λvi.

– i �−→
c

j if there exists v ∈ P such that vi �= 0 and vj = 0.

Reactions i and j are fully (resp. partially, directionally) coupled if the relation

i ⇐⇒
c

j (resp. i ←→
c

j, i −→
c

j) holds. Otherwise, i and j are uncoupled, i.e.,

i �−→
c

j and j �−→
c

i.

With i ⇐⇒ j, i←→j, i−→j, and i �−→ j we denote the corresponding (un-

constrained) coupling relations in CP , where P is replaced with CP .

In the unconstrained case, fully coupled reactions belong to the same enzyme
subset as introduced in [5].

77

2.2 Preprocessing

In a first preprocessing step, we aim to find the blocked reactions in P . As
shown by computational experiments with FFCA [6] or F2C2 [7], genome-scale
metabolic networks may contain several hundreds of blocked reactions. Elimi-
nating these considerably reduces the network size.

Observation 1 If a reaction is blocked in CP , then it is also blocked in P .

Observation 1 holds since P ⊆ CP . Thus, non-existence of v ∈ CP with vi �= 0
implies the non-existence of such a vector in P . This allows us to detect and
remove some blocked reactions in P by studying CP . In particular, we can use
the concept of dead-end metabolites from F2C2 [7] and perform a stoichiometric
matrix-based search to find some of the blocked reactions in P .

Finding blocked reactions relates back to a more general problem. Even if
a reaction is unblocked, there is no guarantee that it is able to display all the
fluxes specified by its bounds. The network structure might further constrain
reaction fluxes and prohibit them to attain their limit. This is different from the
unconstrained case, where fluxes through unblocked reactions are scalable by
any positive number. Therefore, we will compute tight bounds for every reaction,
which we call the true bounds of the reaction.

Definition 3 (True bounds) l∗k ∈ R ∪ {−∞} (resp. u∗
k ∈ R ∪ {∞}) is called

the true lower (resp. upper) bound of reaction k if u∗
k ≥ vk ≥ l∗k, for all v ∈ P ,

and if for all c ∈]l∗k, u∗
k[, there exists v ∈ P with vk = c.

Computing the true lower and upper bound of a reaction k can be done by
solving the following two linear programs:

l∗k = min {vk : Sv = 0, vi ≥ li, for all i ∈ L, vi ≤ uj , for all j ∈ U},
u∗
k = max {vk : Sv = 0, vi ≥ li, for all i ∈ L, vi ≤ uj , for all j ∈ U}. (3)

Having computed the true bounds for every reaction, we can equivalently char-
acterize the flux polyhedron P as

P = {v ∈ Rn | Sv = 0, u∗
i ≥ vi ≥ l∗i , for all i ∈ {1, . . . , n}}. (4)

Trivially, if l∗k = u∗
k = 0, then k is blocked in P . Since blocked reactions can be

removed from the network without altering the coupling relationships between
other reactions, we will assume for the rest of this section that the constrained
metabolic network does not contain such reactions.

Based on the true bounds (l∗k, u
∗
k), we will distinguish eight classes of (un-

blocked) reactions:

– type 1: (−∞, ∞)
– type 2: (−a, ∞) with a > 0.
– type 3: (−a, b) with b ≥ a > 0.
– type 4: (0, ∞)

78

– type 5: (0, b) with b > 0.
– type 6: (a, ∞) with a > 0.
– type 7: (a, b) with b > a > 0.
– type 8: (a, a) with a > 0.

Different types could appear, but by conveniently reversing the direction of such
reactions (i.e., by multiplying the corresponding column in the stoichiometric
matrix with -1), all cases can be reduced to the previous eight. For example, by
multiplying the column of a reaction that would be of type (-∞, 0), we get the
type (0, ∞).

2.3 Algorithmic considerations

We now describe the connection between coupling relations in the flux polyhe-
dron P and the associated flux cone CP . As our results will show, in many cases
it is enough to compute the flux coupling relations in CP (using classical FCA)
to obtain the constrained FCA relations for P . For the proofs of the following
propositions, we refer to [8].

Proposition 2 Consider a flux polyhedron P with no blocked reactions. If for

two reactions i and j, i ⇐⇒ j (resp. i ←→ j, i −→ j) in CP holds, then i ⇐⇒
c

j

(resp. i ←→
c

j, i −→
c

j) also holds in P .

Prop. 2 asserts that if a coupling relation exists in the unbounded network, the
same relation will be carried over to the constrained case. Thus, we only need to
check whether i �−→ j in CP becomes i −→

c
j in P . If both i −→

c
j and j −→

c
i

hold in P , then we also have to check whether i ⇐⇒
c

j holds in P .

Proposition 3 Consider a flux polyhedron P with no blocked reactions. Assume

every reaction is of type 1− 7. Then for any two reactions i and j, we have

a) i ⇐⇒
c

j in P if and only if i ⇐⇒ j in CP .

b) i −→
c

j in P if and only if (i −→ j in CP or j is of type 6 or 7).

Together Prop. 2 and Prop. 3 imply that if every reaction in the metabolic
network shows variability (i.e., is not of type 8), then it is enough to compute
the unconstrained coupling relationships in CP (using classical FCA). All con-
strained coupling relationships then can be obtained without solving additional
linear programs.

Thus, the only case to be further considered is the one where at least one
reaction is of type 8. While we can easily deduce the constrained coupling rela-
tionship between a type 8 reaction and any other reaction in the network, the
effect these reactions will have on the remaining constrained coupling relation-
ships is not trivial.

Observation 4 For a flux polyhedron P , let i be of type 6, 7 or 8, and let j be

an unblocked reaction in P . Then j −→
c

i holds.

79

Table 1. Summary of the deducible constrained coupling relationships based on the
reaction type

❅
❅❅i
j

1 2 3 4 5 6 7 8

1
i �←→

c
j

i ⇐⇒
c

j
i �←→

c
j i �←→

c
j
i �←→

c
j

i −→
c

j
i �←→

c
j i −→

c
j i −→

c
j i −→

c
j

2
i �←→

c
j

i ⇐⇒
c

j
i �←→

c
j
i �←→

c
j

i −→
c

j
i �←→

c
j i −→

c
j i −→

c
j i −→

c
j

3
i �←→

c
j

i ⇐⇒
c

j

i �←→
c

j

i −→
c

j

i �←→
c

j

i −→
c

j
i −→

c
j i −→

c
j i −→

c
j

4 any
i �←→

c
j

j −→
c

i
i −→

c
j i −→

c
j i −→

c
j

5 any i −→
c

j i −→
c

j i −→
c

j

6
i ←→

c
j

i ⇐⇒
c

j
i ←→

c
j i ←→

c
j

7
i ←→

c
j

i ⇐⇒
c

j
i ←→

c
j

8 i ⇐⇒
c

j

Proposition 5 For a flux polyhedron P , let i be a reaction with true lower

bounds l∗i < 0, and j a reaction of different type. Then j �−→
c

i always holds.

Corollary 6 For a flux polyhedron P , let i and j be two reactions of different

type with l∗i < 0 and l∗j < 0. Then i �←→
c

j holds.

Proposition 7 For a flux polyhedron P , let i and j be two reactions with true

upper bounds u∗
i = ∞ and u∗

j �= ∞. Then either j �−→
c

i holds or l∗i > 0.

Proposition 8 For a flux polyhedron P , let i and j be two unblocked reactions

in P . Then i ⇐⇒
c

j holds only if i and j are of the same type.

Proposition 9 For a flux polyhedron P , let i and j be two reactions both of

type 1, both of type 2 or both of type 3. Then i −→
c

j holds only if j −→
c

i holds.

The previous results are summarized in Tab. 1. White cells mark the cases
where the constrained flux coupling relationship are uniquely determined by the
reaction types, whereas gray cells represent the cases where additional linear
programs have to be solved. Note that there are only two cases where any cou-
pling can appear. In all other cases, the coupling is either uniquely determined

80

or corresponds to one out of two options. The lower diagonal part of the table
was left blank for simplicity as it is reverse symmetrical to the upper diagonal
part.

For the entries in Tab. 1 where the coupling is not uniquely determined,
solving additional linear programs (LPs) is necessary. We denote by min(i, j, ci)
the optimum of the following LP, where i and j are two reactions and ci is some
constant with ci ∈]l∗i , u

∗
i [\ {0}:

min(i, j, ci) = min {|vj | : Sv = 0, vi = ci, u
∗
k ≥ vk ≥ l∗k, ∀k ∈ {1, . . . , n}} (5)

Based on Tab. 1, we distinguish between the following cases:

1. Only i �←→
c

j or i ⇐⇒
c

j is possible (entries (1, 1), (2, 2) and (3, 3)). To

find which coupling applies, it is enough to solve two LPs: min(i, j, c1i) and
min(i, j, c2i), where c1i > 0 and c2i < 0. If the optimal solution to either LP
is 0, then i �←→

c
j, otherwise i ⇐⇒

c
j.

2. Only i �←→
c

j or i −→
c

j is possible (entries (1, 4), (2, 4), (3, 4), (3, 5), (4, 5)).

In this case, we can decide between the two options by solving min(i, j, ci).
If min(i, j, ci) > 0 then j −→

c
i, otherwise i �←→

c
j.

3. Only i ←→
c

j or i ⇐⇒
c

j is possible (entries (6, 6), (7, 7)). We can decide

between the two cases by solving min(i, j, ci) and min(j, i, cj). i ⇐⇒
c

j holds

if and only if min(i, j, ci) ·min(j, i, cj) = cj · ci.
4. Any coupling is possible (entries (4, 4), (5, 5)). Determining min(i, j, ci) and

min(j, i, cj) suffices. If min(i, j, ci) > 0 then j −→
c

i. If min(j, i, cj) > 0 then

i −→
c

j. If both LPs have a positive optimum, then i ←→
c

j. i ⇐⇒
c

j holds if

additionally min(i, j, ci) ·min(j, i, cj) = cj · ci.

In the F2C2 algorithm, the most important single improvement was obtained
by the feasibility rule (Observation 6 in [7]). A similar observation can be made
in the constrained case.

Observation 10 (Constrained feasibility rule) For any v ∈ P let I = {i |
vi �= 0} and J = {j | vj = 0}. Then i �−→

c
j for all (i, j) ∈ I × J .

The transitive nature of flux coupling is preserved by Def. 2. Thus similar
transitivity rules can be derived as for F2C2 [7]. For three reactions i, j and k,
it is sometimes possible to derive a coupling relationship between i and k, based
on the coupling relationship for reactions i and j, and reactions j and k. We
refer to [8] for more details.

The main steps of CFCA are summarized in Tab. 2. In the worst case, the
algorithm has to solve 2n+ n(n− 1) linear programs.

81

Table 2. Main steps of the CFCA algorithm

Step Rule
1. Iteratively remove dead-end metabolites and incident reactions to them.
2. Classify the reactions based on true lower and upper bounds; remove the re-

maining blocked reactions
3. Compute the flux coupling relationships of CP with F2C2.
4. If every reaction is of type 1-7, use Prop. 2 and Prop. 3 to deduce all constrained

coupling relationships, STOP.
5. If the coupling relationship for every pair of reaction has been computed,

STOP.
6. Select a pair of reactions i and j for which a coupling has not yet been deter-

mined.
7. Use Tab. 1 and solve corresponding LPs to determine the coupling between i

and j.
8. For every feasible vector computed in step 7, use the constrained feasibility

rule to derive additional constrained uncoupling relationships.
9. For every new constrained (un-)coupling relation computed in steps 7 and 8,

use the transitivity rules to derive additional coupling relations.
10. Goto step 5.

Table 3. Coupling relations in the E. coli core metabolism

Flux coupling relations Directional Partial Full Blocked reactions
CFCA 401 4 40 2
FCA 10 0 38 0

3 Results and conclusion

The CFCA algorithm has been implemented in Matlab, with CLP [9] as linear
programming solver. We applied CFCA to the E. coli core metabolism [10], a
network with 76 reactions and a biomass function. The glucose uptake was set to
10mmol/(gDW ·hr), and a minimum ATP production of 7.6mmol/(gDW ·hr)
was required, which corresponds to the associated non-growth maintenance cost
[10]. All other irreversible reactions were constrained to the interval [0, 1000],
while reversible reactions were limited to [−1000, 1000]. Tab. 3 summarizes the
coupling relations of the constrained network. For comparison, we also performed
standard FCA on the unbounded network using F2C2.

Many of the new directional coupling relations result from the fact that the
glucose uptake and ATP producing reactions were required to have a non-zero
flux. Hence, every other reaction will be coupled to these. After subtracting the
corresponding 2 × 76 directional couplings from the total number of 401, there
still remain 249 new directional couplings between other pairs of reactions.

We conclude that CFCA is a promising new tool for studying coupling rela-
tions in metabolic networks under more general conditions than classical FCA
is able to do.

82

References

1. Terzer, M., Maynard, N.D., Covert, M.W., Stelling, J.: Genome-scale metabolic
networks. Wiley Interdiscip Rev Syst Biol Med 1(3) (2009) 285–297

2. Lewis, N.E., Nagarajan, H., Palsson, B.: Constraining the metabolic genotype-
phenotype relationship using a phylogeny of in silico methods. Nat Rev Microbiol
10(4) (2012) 291–305

3. Burgard, A.P., Nikolaev, E.V., Schilling, C.H., Maranas, C.D.: Flux coupling anal-
ysis of genome-scale metabolic network reconstructions. Genome Res. 14(2) (2004)
301–312

4. Kelk, S.M., Olivier, B.G., Stougie, L., Bruggeman, F.J.: Optimal flux spaces of
genome-scale stoichiometric models are determined by a few subnetworks. Scientific
reports 2 (2012) 580

5. Pfeiffer, T., Sánchez-Valdenebro, I., Nuño, J.C., Montero, F., Schuster, S.: META-
TOOL: for studying metabolic networks. Bioinformatics 15 (1999) 251–257

6. David, L., Marashi, S.A., Larhlimi, A., Mieth, B., Bockmayr, A.: FFCA: a
feasibility-based method for flux coupling analysis of metabolic networks. BMC
Bioinformatics 12(1) (2011) 236

7. Larhlimi, A., David, L., Selbig, J., Bockmayr, A.: F2C2: a fast tool for the compu-
tation of flux coupling in genome-scale metabolic networks. BMC Bioinformatics
13(75) (2012) 57

8. David, L.: Algorithms for the constraint-based analysis of metabolic networks.
Doctoral thesis, Freie Universität Berlin, In preparation.

9. COIN-OR: Computational Infrastructure for Operations Research http://www.
coin-or.org/.

10. Palsson, B.O.: Systems Biology: Properties of Reconstructed Networks. Cambridge
University Press, New York (2006)

83

84

RNA Design by Program Inversion

via SAT Solving

Alexander Bau1, Johannes Waldmann1, and Sebastian Will2

1 HTWK Leipzig, Fakultät IMN
Gustav-Freytag-Str. 42a, 04277 Leipzig, Germany

2 Leipzig University, Computer Science Department
Härtelstrasse 16-18, 04107 Leipzig, Germany

Abstract. We solve the RNA secondary structure design problem ap-
plying a generic system for program inversion; literally inverting RNA
folding. The system enables formulating the problem declaratively in a
high-level language, while taking advantage of the recent tremendous
progress in SAT solving. For this purpose, we formulate the problem
of RNA secondary structure prediction in Haskell, apply our constraint
compiler CO4 to translate it to propositional logic, and apply the SAT
solver MiniSat to obtain a solution efficiently. Untainted by problem spe-
cific optimizations, our encouraging preliminary results shed further light
on the current state of fully declarative methods in bioinformatics.

1 Introduction

RNAs perform various regulatory and catalytic functions, going far be-
yond the traditional picture of RNAs as messengers for coding proteins.
Regularly, these functions do not directly depend on the RNAs’ sequences,
but are mediated by their distinct spatial structures. RNA molecules
are uniquely described as chains of organic bases. While these linear
molecules fold into three-dimensional tertiary structures, many aspects
of RNA structures are commonly studied at the level of RNA secondary
structure, i.e. the set of pairs of bases that are brought into close spa-
tial contacts by hydrogen bonds. Thus for an RNA molecule of length
n, its sequence p = p1 . . . pn (aka. its primary structure) is a string
over the alphabet {A, C, G, U}. Its secondary structure s is a match-
ing of the sequence positions; its elements (i, j) represent base pairs.
For simplicity, one commonly assumes that base pairs are canonical,
i.e. pipj ∈ {AU, CG, GC, GU, UA, UG}. Furthermore, we require s to be
non-crossing, i.e. s does not contain crossing base pairs a and b, where
a1 < b1 < a2 < b2 (or symmetrically).

85

The folding of an RNA with sequence p into a structure s is associated
with a free energy E(p, s). There are different energy models for comput-
ing such free energies. The most accurate models sum over energy terms
of loops (single structural elements that are limited by one or several
base pairs), where the energy terms are derived from experimental (or
statistical) parameters [12,6,2].

For outlining novel algorithmic ideas, commonly simpler energy models
are utilized, where energy terms are assigned to single base pairs. Apply-
ing some care, results do regularly generalize well to more complex energy
models. Consequently, we study a model that assigns finite energy terms
to each canonical base pair (i, j) (e.g. distinguishing GC, AU , and GU
pairs); we forbid non-canonical pairs by assigning infinite energy. Notably
similar models are applied to the fast comparison of RNAs based on RNA
ensembles [5,16].

An elementary problem of RNA bioinformatics is RNA secondary struc-
ture prediction. Since RNA folding, like every physical process, strives to
minimize the free energy, this problem asks for the structure s of p with
minimum E(p, s). Commonly RNA structure analysis is limited to non-
crossing structures, since this allows to predict structures efficiently by
dynamic programming; this holds for base-pair based energy models [13]
as well as for more realistic loop-based models [17].

A similarly fundamental problem is known as RNA design, which asks
for a sequence of an RNA that folds “optimally” into a given structure.
The RNA secondary structure design problem is most naturally phrased as
the exact inverse of structure prediction (therefore, its alias name “inverse
folding”). Its input is a secondary structure s, while its output is a primary
structure p such that s is the solution of the structure prediction problem
for p. Formally, it asks for p such that

E(p, s) = min{E(p, s�) | s� ∈ secondary structures}, (1)

which we call the design constraint.

The design problem has important applications ranging from the study
of RNA evolution to drug design. Several heuristic approaches have been
proposed, which commonly use some kind of stochastic search proce-
dure to find solutions. Examples are RNAinverse [10], RNA-SSD [1], In-
foRNA [4], MODENA [15], and RNAifold [8]. The latter stands out by
combining a constraint approach with large neighborhood search. While

86

it is already based on constraint-programming, which implies various po-
tential advantages like provable optimality (for small instances), we aim
at an even higher level of declarativity.

We propose to make use of the inverse relation between folding and design
in the most immediate declarative way due to general program inversion
(without any problem-specific optimizations.) Essentially, we employ a
fully automatized system to invert a program for structure prediction.
By and large, we formulate the conditions on the solution as a purely
functional program, written in a Haskell-like language. Then, applying our
constraint compiler CO4 [3], we generate a program that, given input s,
builds a specific formula Fs of propositional logic. This formula is designed
together with a mapping sol such that we can derive a solution sol(σ)
from any satisfying assignment σ of Fs. In our system, Fs is solved using
MiniSat [7]. Resorting to a modern SAT solver grants us immediate access
to the tremendous progress in the SAT solving area over the last years. In
this work, we rely on the impressive capabilities of current solvers when
coping with large instances even without any domain-specific tweaking.

Due to its fully declarative nature, our RNA design approach can be
extended flexibly. As immediate benefit, the input may contain additional
constraints on p, e.g. bases at certain sequence positions can be fixed or
restricted. Moreover, we solve a more realistic design variant that asks
for a sequence p that has s as its unique and stable optimal structure.
Formally,

for each s� �= s : E(p, s�) > E(p, s) + ∆, (2)

which we call the stability constraint.

We shortly review program inversion built around the constraint compiler
CO4. Consequently, we describe our constraint programs for the standard
design problem and the design with additional stability requirements. The
latter demonstrates the extensibility of our general approach. Finally, we
discuss the novel approach in the light of our preliminary results and look
out to future developments.

2 The CO4 Language and Compiler

CO4 is a high-level declarative language for describing constraint systems.
The language is a subset of the purely functional programming language
Haskell [11] that includes user-defined algebraic data types and recursive

87

functions defined by pattern matching, as well as higher-order polymor-
phic types. This language comes with a compiler that transforms a high-
level constraint system into a satisfiability problem in propositional logic.
The motivation of this transformation are tremendous developments in
the area of constraint solvers for propositional satisfiability (SAT solvers)
in the recent years. Modern SAT solvers like MiniSat [7] are able to find
satisfying assignments for conjunctive normal forms with 106 and more
clauses within minutes (and sometimes, even seconds). With the availabil-
ity of powerful SAT solvers, propositional encoding is a promising method
to solve constraint systems that originate in different domains. CO4 makes
available the power of SAT solvers (the back-end) via a high-level pro-
gramming language (the front-end), allowing the programmer to write
clean and concise code, without worrying about details of its translation.

CO4 programs are handled and executed in two stages: The input pro-
gram contains a top-level constraint that defines a relation between a
parameter domain K and a domain U for unknowns. In our RNA design
application, K consists of secondary RNA structures, while U consists
of primary RNA structures. The top-level constraint is represented as
a Haskell function of type f : K × U → {False, True}. In the first
processing stage (at compile-time), the program for f is translated into a
program g : K → F ×(Σ → U) with F being the set of formulas of propo-
sitional logic, and Σ being the set of assignments from variables of F to
truth values. In the second stage (at run-time), a parameter value p ∈ K
is given, and g p is evaluated to produce a pair (v, d) ∈ F × (Σ → U).
An external SAT solver then tries to determine a satisfying assignment
σ ∈ Σ of v. On success, d(σ) is evaluated to a solution value s ∈ U .
Proper compilation ensures that f p s = True.

CO4 features built-in natural numbers, with primitives for arithmetics
and comparisons. Numbers use a fixed-width binary representation, and
arithmetical operations use a ripple-carry adder, and Wallace tree mul-
tiplier. These operations fail on overflow, i.e., the outgoing carry bit of
addition is implicitly constrained to be 0. Practically, one avoids overflow
by choosing the required bit width for individual problem instances; for
many problems, including RNA design, this width can be estimated.

In principle, the CO4 language could also be compiled to other constraint
systems, e.g. finite domain constraints or SMT, such that arithmetical
constraints are handled in the back-end, instead of encoding them to
SAT. Comparing different compilation targets would be very interesting,
but is beyond the current scope of the CO4 project.

88

In [3] we specify the compilation, elaborate our implementation of the
given specification, and prove its correctness. A prototype implementation
of CO4 is available at https://github.com/apunktbau/co4. The source
code the RNA design constraint system is at CO4/Test/WCB_Matrix.hs.

3 RNA Design Constraints in CO4

For a constraint system that expresses the design constraint (Eq. 1), we
describe the value of the left-hand side by the computation of a stack au-
tomaton, and we describe the value of the right-hand side by an algebraic
dynamic programming (ADP) matrix computation.
We use this data type to represent energy values:
data Energy = MinusInfinity | Finite Nat

Recall that an infinite energy represents a non-standard base pair. Energy

is a semiring, where addition is the “max” operation, used for selecting
the best option when several are available; and multiplication is the “plus”
operation, used for combining energies from sub-solutions.
plus :: Energy -> Energy -> Energy

plus x y = case x of

MinusInfinity -> y ; Finite f -> case y of

MinusInfinity -> x ; Finite g -> Finite (maxNat8 f g)

times :: Energy -> Energy -> Energy

times x y = case x of

MinusInfinity -> x ; Finite f -> case y of

MinusInfinity -> y ; Finite g -> Finite (plusNat8 f g)

CO4 represents an unknown energy value by one propositional variable
for the choice between MinusInfinity and Finite, and a sequence of
propositional variables to represent the argument of Finite (a binary
number), and it compiles the case expression accordingly.

Our energy model is a function cost :: Base -> Base -> Energy that
contains canonical base pairs with different energies, cost C G = cost

G C = Finite 3, cost A U = cost U A = Finite 2, and a wobbly base pair,
cost G U = cost U G = Finite 1, while all other costs are MinusInfinity.

We can refine the energy model by using larger numbers in the cost func-
tion. We choose a bit width such that the maximal energy can be repre-
sented. E.g., if the maximal cost of a pair is 10, and the the input sequence
length is 40, then there are at most 20 pairs, and the energy is bounded
by 200, so we need 8 bit for numbers.

89

The energy of p when folded along s is computed by a stack automaton:
data Base = A | C | G | U ; data Primary = [Base]

data Paren = Open | Blank | Close ; data Secondary = [Paren]

type Stack = [Base]

parse :: Stack -> Primary -> Secondary -> Energy

parse stack p s = case s of

[] -> Finite 0

y : s’ -> case y of

Blank -> parse stack (tail p) s’

Open -> parse (head p : stack) (tail p) s’

Close -> times (cost (head stack) (head p))

(parse (tail stack) (tail p) s’)

This is a Haskell program (case s of ... is a case distiction on the top
constructor of the list s, and y:s’ is a pattern for a non-empty list). We
will use this program to generate SAT constraints for the unknown ar-
gument p of type Primary. We emphasize that the program can be used
literally to compute the energy in case the primary and secondary struc-
ture are given, and we indeed do this, for double-checking the solution
that we obtained from the solver.

The optimal energy for the (unknown) primary structure is computed by
the ADP framework [9]. For a primary structure w = [w1, . . . , wn], we
describe the energy matrix E of dimension (n + 1) × (n + 1) that contains
in E(i, j) the maximal energy for the substring w[i + 1, . . . , j]. This E is
the (pointwise) least solution of the equation (derived from the grammar)

E = Item +E · E +
�

x,y∈Base
cost(x, y) · Itemx · gap3(E) · Itemy . (3)

Here, “+” and “·” mean matrix addition and multiplication over the en-
ergy semiring; Itemx is the matrix with Itemx(i, j) := if (i+1) = j∧wj = x
then 0 else −∞ (this is used to check that a certain base is present);
Item :=

�
x∈Base Itemx; and gapd(M)(i, j) := if i+d ≤ j then M(i, j) else

−∞ (this is applied to require a minimal hairpin length). Also, cost(·, ·)
is a scalar (or a scaled identity matrix).

We can replace the equation by

E = Item +E · E + C ⊙ �gap3(E)� (4)

which requires fewer operations, where C is the cost matrix (with C(i, j) :=
if i + 1 < j then cost(wi+1, wj) else −∞); and we use an index shift op-
eration �M�(i, j) := if i < n ∧ j > 0 then M(i + 1, j − 1) else −∞; and
point-wise multiplication (A ⊙ B)(i, j) := A(i, j) · B(i, j).

90

The top-level constraint is of type

design :: Secondary -> (Primary, Matrix Energy) -> Bool

and design s (p,m) is true iff m is the ADP matrix for p, and the design
constraint (Eq. 1) for (s,p) holds.

The size of the generated SAT formula is bound by the runtime of the
compiled program, which itself is bound by the runtime of the original
program. The dominant operation in (3) is the multiplication of energy
matrices E. So the size of the SAT formula is cubic in the length of the
given primary structure.

4 RNA Design Stability Constraints in CO4

To formulate the stability constraint (Eq. 2), we describe in the ADP
framework the computation of energy pairs,

data Energy2 = Energy2 Energy Energy

where the first component is the maximal energy, and the other com-
ponent is the second best energy. In particular, if the there is only one
secondary structure that realizes the maximal energy, the second compo-
nent is MinusInfinity; and if there is more that one secondary structure
that realizes the maximal energy, then both components are identical. We
obtain the matrix of energy pairs from a version of Equation 4 correspond-
ing to a non-ambiguous grammar: E = (Item +C ⊙ �gap3(E)�) · (E + Id)

ADP matrix computations from the previous section can be re-used since
we use higher order function that takes semiring operations as arguments:
plus2 :: Energy2 -> Energy2 -> Energy2

plus2 (Energy2 x1 y1) (Energy2 x2 y2) =

Energy2 (plus x1 x2) (plus (min x1 x2) (plus y1 y2))

times2 :: Energy2 -> Energy2 -> Energy2

times2 (Energy2 x1 y1) (Energy2 x2 y2) =

Energy2 (times x1 x2) (plus (times x1 y2) (times x2 y1))

lift2 :: Energy -> Energy2

lift2 e = Energy2 e MinusInfinity

We apply lift2 to all weights, to obtain a constraint system for the ADP
matrix with entries of type Energy2.

Its top right entry is a pair (e, f) for which we require e > f + ∆ , cf.
Eq. 2, by adding this to the top-level constraint.

91

5 Results and Discussion

The objective of this paper has been to study a radical approach to the
RNA design problem. While previous methods have introduced special-
ized heuristics, which are carefully tuned to the specific problem, we have
formulated the problem in the most natural way as inverse of the fold-
ing problem. This purely declarative approach is enabled by a very re-
cent generic constraint programming system for program inversion built
around the compiler CO4. Building on powerful SAT solving, the ap-
proach does furthermore guarantee the optimality of designed RNA se-
quences and even proves non-existence of solutions in over-constrained
instances.

Table 1. Test results on exemplary RNA structures.

runtime
structure len #variables #clauses #literals overall solver

((((...))..((...)))) 20 77951 368036 1166086 5s 2s
(((((....)))))..(((((....))))) 30 235714 1164984 3712214 16s 4s

((((((....)))..(((....)))..(((....)))))) 40 526111 2666878 8525686 7m22s 7m
..(((((((((((((((((((((....)))))))))..)))))))))))) 50 989133 5096071 16324618 1m35s 36s

According to our preliminary results (cf. Table 1) on design constraints
without the stability condition (cf. Section 3), this system is currently
capable of designing RNA sequences of length 40–50 within minutes (on
Intel® Core™ 2 Duo CPU with 2.20GHz and 4GB RAM). Design con-
straints including the stability condition lead to larger formulas, which
result in longer solver runs (cf. Table 2).

Table 2. Test results on exemplary RNA structures including the stability condition.

runtime
structure len #variables #clauses #literals overall solver
.(((...))) 10 80465 303893 917948 4s 1s

((((...))..((...)))) 20 615934 2482954 7500992 1m9s 52s
(((((....)))))..(((((....))))) 30 2042077 8434257 25514060 2m47s 1m58s

These experiments verify the feasibility of our approach. We anticipate
that ongoing development of CO4 will allow to produce smaller proposi-
tional encodings, and this will speed up solving; as will further advances

92

in SAT solvers. Whereas several existing approaches support stability
design by optimizing the probability of the target structure, we have pro-
posed the alternative design of an energy gap, which is elegantly expressed
adopting an algebraic DP perspective. Conceptually straightforward, our
approach can be extended to richer energy models by exchanging the
grammar in Eq. 3 (and adapting the energy evaluation by parse.) Sim-
ilarly, one could support pseudoknots (from restricted structure classes)
by plugging in appropriate grammars (e.g. [14].) However, the current
limitation to simple energy models prevents a final evaluation by direct
empirical comparison to existing design approaches, which generally sup-
port richer energy models. Nevertheless, already the current implementa-
tion demonstrates the feasibility of the proposed RNA design approach;
its declarativity supports easy extension to many interesting, even novel,
variants of RNA design, most significantly design under complex design
constraints like the stability constraint.

Acknowledgements

Alexander Bau is supported by the European Science Foundation (ESF
grant 100088525).

References

1. Rosalia Aguirre-Hernandez, Holger H. Hoos, and Anne Condon. Computational
RNA secondary structure design: empirical complexity and improved methods.
BMC Bioinformatics, 8:34, 2007.

2. Mirela Andronescu, Anne Condon, Holger H. Hoos, David H. Mathews, and
Kevin P. Murphy. Efficient parameter estimation for RNA secondary structure
prediction. Bioinformatics, 23(13):i19–28, 2007.

3. A. Bau and J. Waldmann. Propositional Encoding of Constraints over Tree-
Shaped Data. Technical report, HTWK Leipzig, 2013. ArXiv e-prints.
http://arxiv.org/abs/1305.4957.

4. Anke Busch and Rolf Backofen. INFO-RNA–a server for fast inverse RNA folding
satisfying sequence constraints. Nucleic Acids Res, 35(Web Server issue):W310–3,
2007.

5. Chuong B. Do, Chuan-Sheng Foo, and Serafim Batzoglou. A max-margin model
for efficient simultaneous alignment and folding of RNA sequences. Bioinformatics,
24(13):i68–76, 2008.

6. Chuong B. Do, Daniel A. Woods, and Serafim Batzoglou. CONTRAfold: RNA
secondary structure prediction without physics-based models. Bioinformatics,
22(14):e90–8, 2006.

7. Niklas Eén and Niklas Sörensson. An extensible sat-solver. In SAT, pages 502–518,
2003.

93

8. Juan Antonio Garcia-Martin, Peter Clote, and Ivan Dotu. RNAiFOLD: a con-
straint programming algorithm for rna inverse folding and molecular design. J
Bioinform Comput Biol, 11(2):1350001, 2013.

9. Robert Giegerich. A systematic approach to dynamic programming in bioinfor-
matics. Bioinformatics, 16(8):665–677, 2000.

10. Ivo L. Hofacker, Walter Fontana, Peter F. Stadler, Sebastian Bonhoeffer, Man-
fred Tacker, and Peter Schuster. Fast folding and comparison of RNA secondary
structures. Monatshefte Chemie, 125:167–188, 1994.

11. Simon Peyton Jones, editor. Haskell 98 Language and Libraries, The Revised
Report. Cambridge University Press, 2003.

12. DH Mathews, J Sabina, M Zuker, and DH Turner. Expanded sequence dependence
of thermodynamic parameters improves prediction of RNA secondary structure. J
Mol Biol, 288(5):911–40, 1999.

13. Ruth Nussinov, George Pieczenik, Jerrold R. Griggs, and Daniel J. Kleitman. Al-
gorithms for loop matchings. SIAM J Appl Math, 35(1):68–82, July 1978.

14. Jens Reeder and Robert Giegerich. Design, implementation and evaluation of a
practical pseudoknot folding algorithm based on thermodynamics. BMC Bioinfor-
matics, 5:104, 2004.

15. Akito Taneda. MODENA: a multi-objective RNA inverse folding. Adv Appl Bioin-
form Chem, 4:1–12, 2011.

16. Sebastian Will, Christina Schmiedl, Milad Miladi, Mathias Möhl, and Rolf Back-
ofen. SPARSE: Quadratic time simultaneous alignment and folding of RNAs
without sequence-based heuristics. In Minghua Deng, Rui Jiang, Fengzhu Sun,
and Xuegong Zhang, editors, Proceedings of the 17th International Conference on
Research in Computational Molecular Biology (RECOMB 2013), volume 7821 of
LNCS, pages 289–290. Springer Berlin Heidelberg, 2013.

17. M. Zuker and P. Stiegler. Optimal computer folding of large RNA sequences using
thermodynamics and auxiliary information. Nucleic Acids Res, 9(1):133–48, 1981.

94

Index

Bau, Alexander, 85
Bockmayr, Alexander, 85

Dal Palù, Alessandro, i
David, Laszlo, 85
de Givry, Simon, 37
Dovier, Agostino, i

Elsen, Jean-Michel, 37

Fages, François, 27, 67
Fioretto, Ferdinando, 1

Gay, Steven, 67

Katsirelos, George, 37
Kishimoto, Akihiro, 17

Lesaint, David, 47

Mann, Martin, 57
Marinescu, Radu, 17
Mehta, Deepak, 47

O’Sullivan, Barry, 47

Pontelli, Enrico, 1

Radulescu, Ovidiu, 27

Santini, Francesco, 67
Shumbusho, Felicien, 37
Soliman, Sylvain, 27, 67

Thiel, Bernhard, 57

Waldmann, Johannes, 85
Will, Sebastian, 85

