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Preface

Computation has become an indispensable method for today’s bio-sciences. Many routine tasks of bio-

logical research are performed using well-established algorithms. However, the increasing complexity of

studied systems demands for new computational solutions to complex and often NP-hard problems. By

their ability to simplify problem modeling and to face computationally hard problems, constraint-based

methods promise to contribute essentially to the Bioinformatics tool set. Many Bioinformatics problems

are naturally formalized in constraint-systems over finite domains or reals. This trend emerged more than

10 years ago, witnessed by the workshops Constraints and Bioinformatics/Biocomputing associated to

CP97 and CP98 and later, starting from 2005, the Workshop on Constraint based methods for Bioinfor-

matics (briefly, WCB) series have been held regularly every year. These workshops provide an excellent

overview over recent approaches for tackling Bioinformatics problems using constraint methodology.

Furthermore it acts as a platform for discussion among experts in this area. Constraint techniques proved

to be successful for a variety of problems. Some particular topics are sequence analysis, biological

systems simulations, protein structure prediction and docking, pedigree analysis, haplotype inference.

This year, we accepted 9 strong workshop contributions out of high quality submissions. The top-

ics comprise analysis of pedigrees, haplotypes and differentiation of species. Furthermore, alignment

of RNA with complex structures, protein structure analysis and prediction, and finally, the analysis of

metabolic pathways and the modeling of biological systems. Again, we observe a continuing high inter-

est in the workshop. The diversity of topics and the reported results emphasize that constraints provide a

valuable tool for bioinformatics and promise significant advance for a broad variety of applications.

We would like to thank here our colleagues Rolf Backofen, Pedro Barahona, Alexander Bockmayr,

Mats Carlsson, Esra Erdem, Simon de Givry, Francois Fages, Inês Lynce, Neil Moore, and Enrico Pon-

telli, that accepted to be member of the Program Committee and dedicated their precious time in the

reviewing phase, as well as the external reviewers Lars Kotthoff, Halit Erdogan, and Ozan Erdem, that

helped us in the same stage. We also would like to thank the FLOC organization, and in particular,

Veronica Dahl, Phil Scott, Bartek Klin, Nicole Schweikardt, and Andrei Voronkov, and of course all the

authors that submitted a paper to this edition of the workshop. A particular thank to Alexander Bockmayr

who contributed, by accepting to give the invited talk, to enrich the contents of the workshop.

Alessandro Dal Palù and Agostino Dovier are partially supported by the grants: GNCS-INdAM

Tecniche innovative per la programmazione con vincoli in applicazioni strategiche, and PRIN 2008

Innovative multi-disciplinary approaches for constraint and preference reasoning.

May 2010 Alessandro Dal Palù

Agostino Dovier

Sebastian Will
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Abstract

Systems biology is a new interdisciplinary research field that has received considerable attention in recent

years. While traditional molecular biology studies the various components of a biological system (e.g.

genes, RNAs, proteins) in isolation, systems biology aims to understand how these components interact

in order to perform complex biological functions. A variety of mathematical and computational methods

is currently being used to model and analyze biological systems, ranging from continuous, stochastic,

and discrete to various hybrid approaches.

The idea of constraint-based modeling in systems biology is to describe a biological system by a set

of constraints, i.e., by pieces of partial information about its structure and dynamics. Using constraint-

based reasoning one may then draw conclusions about the possible system behaviors.

In this talk, we will focus on constraint-based modeling techniques for regulatory networks starting

from the discrete logical formalism of René Thomas. In this framework, logic and constraints arise at

two different levels. On the one hand, Boolean or multi-valued logic formulae provide a natural way to

represent the structure of a regulatory network, which is given by positive and negative interactions (i.e.,

activation and inhibition) between the network components. On the other hand, temporal logic formulae

(e.g. CTL) may be used to reason about the dynamics of the system, represented by a state transition

graph or Kripke model.

Emphasis will be on non-deterministic modeling of the network dynamics and model checking tech-

niques for network inference. We will also discuss how to include additional temporal constraints on

time delays in a hybrid discrete-continuous modeling framework.
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Abstract

A large number of species cannot be distinguished via standard non genetic analysis in the lab.

In this paper we address the problem of finding minimum sets of restriction enzymes that can be

used to unequivocally identify the species of a yeast specimen by analyzing the size of digested DNA

fragments in gel electrophoresis experiments. The problem is first mapped into set covering and then

solved using Constraint Programming techniques. Although the data sets used are relatively small

(23 yeast species and 331 enzymes), a similar approach might be applicable to larger ones and to

a number of variants as discussed in the conclusion. The subject of this paper has already raised

the interest of our biologist partners and may become a benchmark for the application of Constraint

Programming techniques to Bioinformatics.

1 Introduction

The problem of yeast identification was historically addressed through the study of both morphological

traits and physiological features [3,5,16], but alternative molecular methods have been adopted to obtain

the sequence of particular genomic regions and thus identify a given species [6, 11].

Although sequencing nucleic acids is more accessible than ever, it is still an expensive technique,

especially if applied to a high numbers of specimens. In contrast to less expensive techniques like RFLP,

RAPD, MSP-PCR (which allow the formation of clusters among the specimens to be identified, with

inherent result limitations in scope), ARDRA [12] was proposed to differentiate between species of a

eubacterial family and it represents an approach that goes beyond the mere clustering operation. The

amplified fragment and the digestion products sizes are reproducible, characteristic for the substrate se-

quence, and thus characteristic for the source taxon, generally enabling the identification of the organism.

ARDRA-ITS [10] was developed with the purpose of differentiating fungal species. The differences

between the original technique and the ITS variant lay on the primers, ITS1 and ITS4 [15], that amplify

the 5.8S-ITS region of the operon, and in the set of enzymes used: HaeIII and TaqI. Other authors

[1] took a step further and proposed the use of a variant, ARDRA-ITS, as an identification method for

yeasts. They used a different set of restriction enzymes (CfoI, HaeIII, HinfI, and several more to resolve

occasional ambiguities), and the latter target region, the 5.8S-ITS region. This genomic region also

happens to be one of the better represented in the public nucleotidic sequences databases (GenBank,

EMBL Bank and DDBJ consortium). This approach has been used with considerable success to identify

yeasts associated with food [2,7,13] and a commercial database is available for this purpose (www.yeast-

id.com), but its usefulness has been hindered by the reduced set of yeast strains studied and the limitations

of size resolution of classical electrophoresis apparatus.

Recent papers are acknowledging the power of in silico contributions in this field. One is limited to

the forecast of electrophoretic patterns [8], the other presents a program to assess the utility of a fixed set

∗The author David Buezas was supported by the European Master’s Program in Computational Logic (EMCL).
†Centro de Inteligência Artificial, Dep. de Informática, Faculdade de Ciências e Tecnologia / Universidade Nova de Lisboa,

Caparica, Portugal.
‡Centro de Recursos Microbiológicos, Dep. Ciências da Vida, Faculdade de Ciências e Tecnologia / Universidade Nova de

Lisboa, Caparica, Portugal.
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of endonucleases to distinguish between a given set of sequences [14]. However, the integration of all the

available data in a comprehensive in silico approach, targeting optimality in identification by ARDRA is

still to be proposed.

The purpose of this paper is twofold. Firstly, in the context of ARDRA-ITS, we propose to infer

the minimum set of enzymes required to identify one, from a given set of yeasts. Secondly, we propose

that this problem is used as benchmark for Constraint Programming methods applied to Bioinformatics.

Although the instance presented in the paper has been solved, larger instances and variations of the

problem may pose a relevant challenge to CP techniques.

The paper is organized as follows. Section 2 shows how the ARDRA-ITS technique can be cast into

a minimum set covering problem. Section 3 presents different models to obtain both a single solution and

all solutions to this problem, and briefly discusses the experimental results obtained with them. Finally,

section 4 presents some initial conclusions and a discussion of further work.

2 Mapping ARDRA into a Minimum Set Covering problem

The ARDRA-ITS technique identifies one from a set of specimens through analysis of a specific DNA

sub-sequence of its genome. Restriction enzymes (that, as is well known, cut double-stranded or single

stranded DNA at specific recognition nucleotide sequences, known as restriction sites) play a central role

in the ARDRA-ITS technique that proceeds as follows: First, a “standard” fragment of the test specimen

DNA is obtained (in the case of yeasts, the 5.8S-ITS region of their operons), and many copies of it are

produced. Secondly, a set of restriction enzymes are separately applied to these copies. The complete

digestion of each enzyme yields several smaller nucleotide segments that, subject to gel-electrophoresis,

originate bands of different lengths.

Each yeast - restriction enzyme pair generates a specific band pattern, but given the similarity of their

DNA, several yeasts are likely to present similar patterns when digested by most restriction enzymes.

Subject to some experimental error, there is a one-to-one correspondence between fragment sizes and

the position of the respective band in the pattern, hence the sizes of the fragments obtained can be

approximately calculated from the gel electrophoresis experiments. On the other hand, when its DNA

sequence is known, the pattern produced by the digestion of yeast Y (or rather, the 5.8S-ITS region of its

operon) by the restriction enzyme R can be computed by running a simulation of a gel electrophoresis

experiment. A simple diagram of digestion in this context is shown in Figure 1.

enzyme's recognition pattern

CGG^CCG

yeast's DNA

...TGGCCGTCGGCCGGCTTTCA...

fragment

...TGGCCGTCGG

fragment

CCGGCTTTCA...

Figure 1: Diagram of digestion

A restriction enzyme R differentiates two yeast specimens Y1 and Y2 if the patterns it produces from

them are distinguishable, i.e. at least one fragment in one of the digested yeasts is of a sufficiently
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different size from any fragment in the other digested yeast.

It is thus possible to produce a Boolean coverage table D, where rows denote yeast pairs and columns

represent restriction enzymes. In this table the cell in the row Yi−Yj and the column Ek tells whether

that yeast pair is differentiated by that restriction enzyme. The problem of identifying a yeast among a

set of similar yeasts can be formulated as finding a set S of restriction enzymes that differentiate any pair

of yeasts, i.e. for all rows there is at least one enzyme in S such that its corresponding column has a true

value for that row.

More formally, given a set of yeasts Y = {Y1, ...,YNy} and a set of enzymes E = {E1, ...,ENe}, we

denote as P(i,k) the induced pattern for Yi by Ek, i.e. the set of segment lengths produced by the digestion

of yeast Yi by enzyme Ek. Two patterns P and Q are distinct if there is a fragment length in one of them

that is sufficiently different (depending on the experimental error and denoted by 6≈) from any fragment

of the other pattern i.e.

distinct(P,Q) =de f (∃u ∈ P)(∀v ∈ Q)(u 6≈ v)∨ (∃u ∈ Q)(∀v ∈ P)(u 6≈ v)

Two yeasts are differentiated by a restriction enzyme if the patterns induced in them are distinct:

(∀i < j in 1..Ny)(∀k in 1..Ne)

differentiate(i, j,k) =de f distinct(P(i,k),P( j,k))

A discriminating set of enzymes S is a subset of the set E of enzymes that, for any pair of yeasts in the

set Y , has an element that differentiates them, i.e.

disc(S,Y ) =de f ∀(i- j) ∈ Y ∃k ∈ S : differentiate(i, j,k)

A minimal (optimal) discriminating set of enzymes S is a discriminating set with minimal cardinality:

min disc(S,Y ) =de f disc(S,Y )∧ (∀R disc(R,Y )→ #S≤ #R)

Hence, given a set Y of yeast specimens, the ARDRA-ITS problem can be regarded as the problem of

finding, from a set E of available restriction enzymes, a minimal discriminating set S for the set of yeast

specimens.

Since some solutions might be preferred over others by the user (according to not yet fully formalized

criteria such as reliability, availability and cost) it is also interesting to find not only one, but all minimal

discriminating sets.

3 Alternative models

We tested a number of alternative models with a dataset of commercially available restriction enzymes,

containing about 3500 elements [9]. As this set was redundant, meaning that many enzymes had the same

recognition sequences, it was reduced to an equivalent one containing only 331 enzymes. The dataset

of yeasts that we used is available in [http://www.cbs.knaw.nl/databases/], it includes the nucleotide

sequences of the 5.8S-ITS region of the operons of 23 yeast specimens. All the tests presented below

where run in a Intel(R) Core(TM)2 Duo T5670 @1.80GHz (2 CPUs) with 3 GB of RAM, with a SICStus

4 CLP system.

3.1 Greedy model

A simple and greedy approach to solve the problem was implemented by accumulating the best enzymes

(i.e. those that differentiate more yeast pairs still to be covered) until all yeast pairs are covered. The

pseudo code is shown in Algorithm 1.
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Algorithm 1 Greedy model

1: S← /0
2: Y ←{i- j : i ∈ 1..Ny, j ∈ 1..Ny, i < j} ⊲ the set of all yeast pairs to cover

3: E←{k : k ∈ 1..Ne} ⊲ the set of all enzymes available

4: while Y 6= /0 do

5: e← argmax
k∈E

(

∑
i- j∈Y

differentiate(i, j,k)

)

⊲ select the most covering enzyme

6: S← S∪{e}
7: Y ← Y\{i- j : differentiate(i, j,e)} ⊲ subtract the covered yeast pairs

8: end while

Of course, this greedy approach does not guarantee that, upon termination, set S is an optimal dis-

criminating set. In fact, notwithstanding the very fast execution time (125 ms), the solution found with

our datasets contains nine enzymes, being far from minimal and therefore useless.

3.2 Backtrack model

This model guarantees optimality by finding differentiating sets of restriction enzymes with an increased

size. The first set obtained is thus an optimal discriminating set. Alternative minimal differentiating sets

can be obtained (with backtracking) by changing the condition in the while loop. The pseudo code is

shown in Algorithm 2.

Algorithm 2 Backtrack model

1: Y ←{1, ...,Ny} ⊲ the set of all yeast identifiers

2: p← 0 ⊲ p stands for the size of the solution

3: f ound← false

4: while ¬ f ound do

5: p← p+1 ⊲ the size of the optimal solution is searched incrementally

6: for all k1..kp ∈ 1..Ne : e1 < ... < ep do

7: S←{k1, ...,kp}
8: for all i, j ∈ 1..Ny : i < j do

9: if ¬ discriminate(i, j,S) then

10: break

11: end if

12: end for

13: end for

14: f ound← differentiate(Y,S)
15: end while

The execution time was close to 1 minute, but is heavily dependent on the order in which the enzymes

are considered. If all solutions were to be found by backtracking alone, a huge number (around 6 million)

of triplets would have to be tested, requiring an unacceptably huge execution time.

3.3 Constraint Programming model with Boolean variables

The selection of the kth enzyme in the discriminating set is modeled by a Boolean variable xk, and a Con-

straint Programming system simply solves the problem of finding an assignment of these variables that

covers all the yeast pairs, each covering being represented by a sum-product constraint of the variables

xk and the 0/1 constants representing the differentiating features. Of course all solutions can be obtained

by backtracking. The pseudo code is shown in Algorithm 3.
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Algorithm 3 Boolean CP model

1: X ← [x1, ...,xNe
] ⊲ one boolean variable for each enzyme identifier

2: for all x ∈ 1.Ne do

3: xk ∈ 0..1
4: for all i, j ∈ 1..Ny : i < j do
5: ∑

k∈1..Ne

xk ∗ differentiate(i, j,k)≥ 1 ⊲ constraints are imposed

6: end for

7: end for

8: label(X): minimising

(

∑
k∈1..Ne

xk

)

With this model, the first minimum solution was found 15 seconds, which includes the 5 seconds

necessary to initialize the covering table. This model is sufficiently efficient to compute all solutions of

this problem instance. After the initialization time, all solutions were found in 15 minutes (the timing

for finding the next solution vary widely from a some milliseconds to a few minutes).

3.4 Constraint Programming model with Finite Domain variables

Now each variable xi j in the X vector is associated to the yeast pair Yi-Yj and its domain is the set of

enzymes that differentiate such pair. By labeling X minimizing the number of different elements it uses,

minimum solutions are found. The pseudo code is shown in Algorithm 4.

Algorithm 4 Finite Domain CP model I

1: X = [x1-2, ...,xi- j, ...,x(Ny−1)-Ny
] : i < j ⊲ one Finite Domain variable for each yeast pair

2: list to set(X ,S)
3: for all i, j ∈ 1..Ny : i < j do

4: xi- j ∈ {k ∈ 1..Ne : differentiate(i, j,k)}
⊲ the domain of xi- j is the set of enzyme identifiers that cover the i- j pair

5: end for

6: label(X): minimizing(#S)

To be effective, this model requires the minimization of the number of distinct values in list X (or

equivalently, the number of elements in set S). In CP systems this can be achieved using the Nvalue(K,L)

global constraint, that maps into the finite domain variable K, the number of distinct values in list L, as

proposed in [4].

With this model, finding the first minimal solution takes 1 second (after the 5 seconds for table

initialization). Unfortunately, the model cannot be used to find all solutions since many repetitions are

obtained. For example, let us assume we have three yeast specimens (Y1,Y2,Y3) forming three distinct

yeast pairs

P1 =< Y1,Y2 >,P2 =< Y1,Y3 >,P3 =< Y2,Y3 >

and that P1 is covered by enzymes 2 and 3, P2 by enzymes 1 and 3, and P3 by enzymes 1 and 2. The

tree yeast pairs would be represented as the vector X = [x1-2,x1-3,x2-3] where x1-2 ∈ {2,3}, x1-3 ∈ {1,3}
and x2-3 ∈ {1,2}. This configuration allows six different labelings for X which use the least number of

enzymes and therefore minimize the cardinality of S, namely:

X1 = [2,1,1] X2 = [3,1,1] X3 = [3,3,2]

X4 = [2,1,2] X5 = [3,3,1] X6 = [2,3,2]
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but since S is a set, each pair of labelings in the same column represent the same solution. Here there

are only two repetitions per solution, but when real data is used the number of repetitions is so big that it

prevents the enumeration of all solutions.

3.5 Avoiding repetitions with a different Finite Domain model

The previous model could not be easily adapted finding all solutions because, as just discussed, the same

solution can come in a wide variety of encodings. Hence we decided to use a somewhat dual model of

the previous one by having variables associated to restriction enzymes instead of yeast pairs. Once we

found a minimal solution using the previous model, we may fix the size of a list of enzyme variables that

must distinguish all yeast pairs. The pseudo code is shown in Algorithm 5.

Algorithm 5 Finite Domain CP model II

1: p← #S ⊲ where #S is the minimum solution size

2: S← [k1, ...,kp]
3: k1 < ... < kp ⊲ imposing an order avoids repeated solutions

4: for all i, j ∈ 1..Ny : i < j do

5: E←{e : differentiate(i, j,e)}
6:

∨

i∈1..p
(ki ∈ S) ⊲ a disjunctive constraint is posed

7: end for

8: label(X)

Note that this model can only be setup when the size of a minimal solution is known. Alternatively,

we may start with a set of enzymes with cardinality 1 and increment this size, as with the second (back-

track) model. With this model all solutions were found in 50 seconds. Hence, Finite Domain models

improve on the Boolean model by one order of magnitude, both to find the first solution (1 sec against

10 secs) as well as all solutions (50 secs against 15 mins).

4 Conclusions and further work

In this paper we explore several potential models to a Bioinformatics problem, raised by the ARDRA-

ITS experimental technique, requiring the minimization of the number of enzymes that must be used in

gel electrophoresis experiments to unequivocally tell a yeast within a set of alternative and related yeasts

specimens. By and large the problem can be applied to other types of organisms (ARDRA-ITS is an

adaptation of ARDRA, originally used for identification of eubacterial family members) so its practical

application can be quite wide.

Species are the taxonomic level we dealing with in this paper, but this approach can be extended

to handle any taxonomic level. This idea is worth pursuing since when higher taxonomic levels are

considered the execution time is reduced (because the number of specimen pairs in the coverage table is

smaller) and solutions are likely to require a smaller number of enzymes.

The technique we used mapped the problem into a set covering problem, whose complexity is propor-

tional to number of available restriction enzymes and the square of the number of specimen to identify.

The data sets we used (around 300 enzymes and 23 yeasts, i.e. 253 yeast pairs) show the advantage of

using constraint programming techniques over backtracking or purely heuristic search techniques, which

solve this problem somewhat naively. Incidentally, this also justifies why we did not compare our mod-

els with Integer Programming alternatives, although we plan to do so whenever larger data sets are be

available.
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A number of variants to deal with uncertainty can be considered for this problem. On the one hand,

we arbitrarily assumed that bands in electrophoresis experiments are distinguishable if their lengths differ

by a certain minimum ratio (we used ± 5%). This is hardwired in our models but it would be interesting

to model such relative difference as a parameter that is to be maximised, so that the solutions found are

not only minimal but also the most reliable ones. On the other hand, we may consider that the yeast

databases are obtained by consensus, and some of their nucleotides may vary. A quantified version of

the problem would be to find a minimal set of enzymes that unequivocally identify a yeast, whatever the

nucleotides a yeast variant may present. We plan to address both variants of this problem and provide a

more comprehensive set of benchmarks, as well as experimental results.
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Abstract

Pedigrees are ‘family trees’ relating groups of individuals which can usefully be seen as Bayesian

networks. The problem of finding a maximum likelihood pedigree from genotypic data is encoded

as an integer linear programming problem. Two methods of ensuring that pedigrees are acyclic are

considered. Results on obtaining maximum likelihood pedigrees relating 20, 46 and 59 individuals

are presented. Running times for larger pedigrees depend strongly on the data used but generally

compare well with those in the literature. Solving is particularly fast when allele frequency is uni-

form.

1 Introduction

The problem of finding the most probable pedigree (‘family tree’) for a group of related individuals,

whether human or not, is often needed for paternity and family reunion cases [7]. Correctly specifying

relationships is also needed for the proper application of genetic linkage analysis. In the literature the

problem is often called pedigree reconstruction and we will also make use of this term.

A Bayesian approach is frequently taken where prior knowledge is combined with observed data

to define a posterior probability for any given pedigree. Prior knowledge can include information such

as known relationships, age and/or sex of some of the individuals and perhaps limits on the number of

generations in the pedigree. In addition, probabilistic prior knowledge stating that, for example, very

high levels of inbreeding are unlikely, can also be included [7, 13].

Data will be genotypic data for each individual under consideration. This data will be defined via a

set of marker loci each specifying a position on a particular chromosome. The DNA sequence at such loci

will vary between different individuals and so the marker can be thought of as a variable. The possible

values of this variable are known as alleles. Chromosomes come in pairs, one inherited from the father

and one from the mother, so there is a pair of allele values, called the genotype, for each locus. See [9]

for further information. Data for pedigree reconstruction typically consists of genotypes for a number of

marker loci: call this a multi-locus genotype. In the interests of brevity multi-locus genotype will often

be abbreviated to just genotype in what follows.

As a result of its importance a number of computational techniques have been used for pedigree

reconstruction including simple enumeration [7], simulated annealing [2, 11], MCMC [3] and dynamic

programming [5]. However, it appears that constraint-based methods have yet to be used for pedigree

reconstruction although [12, 10] apply weighted CSP and SAT techniques, respectively, to check the

consistency of a given pedigree. Also a weighted MAX-SAT approach has been used for the problem

of Bayesian network learning [6]; pedigree reconstruction can be seen as a special case of this (see

Section 2).

In this paper pedigree reconstruction is cast as a instance of Bayesian network learning and integer

linear programming (IP) is used to search for maximum likelihood Bayesian networks. The paper is

structured as follows. In Section 2 a method for representing pedigrees as Bayesian networks (BNs) is

given and the likelihood function for such BNs is analysed. Section 3 discusses IP encodings for pedigree

reconstruction. Section 4 shows results for the most successful encoding found to date and the paper ends

with conclusions and pointers to future work in Section 5.

9
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2 Pedigrees as Bayesian networks

A Bayesian network (BN) is an acyclic directed graph whose nodes (V ) represent random variables.

(Such graphs are often called, somewhat imprecisely, directed acyclic graphs (DAGs).) If there is an

arrow from node u ∈ V to node v ∈ V in the graph then u is said to be a parent of v. The parameters

of a BN are conditional probability distributions for each node given its parents in the graph. Since the

graph is acyclic the product of these conditional probability distributions defines a full joint probability

distribution over all random variables represented in the graph.

There are a number of ways of representing pedigrees as BNs [9], but here, like [5], each node in

the BN represents a known individual, or more precisely the multi-locus genotype of that individual. An

arrow from u to v is a statement that u is the biological parent of v. It follows that no node may have more

than two parents. A node with no parents represents a founder: an individual neither of whose parents

are to be found amongst the individuals considered. A node with one parent represents an individual with

exactly one known parent and a node with two parents represents an individual both of whose parents are

known. Following [5] Hardy-Weinberg equilibrium will be assumed which implies that the multi-locus

genotypes for founders will be probabilistically independent. In addition only complete genotypic data

(for a given collection of markers) will be considered.

Following [5] let α1(gv|gu) denote the probability that individual v has genotype gv given that it has

one known parent u with genotype gu. Let α2(gv|gu,gw) be the probability that individual v has genotype

gv given that its has two known parents u and w with genotypes gu and gw. Let α0(gv) be the marginal

probability that individual v has genotype gv. Since for any particular pedigree reconstruction problem

the observed genotype gv for each individual v is fixed, the following notational abbreviation can be

introduced.

α(v,{})
def
= α0(gv)

α(v,{u})
def
= α1(gv|gu)

α(v,{u,w})
def
= α2(gv|gu,gw)

As noted by [5] due to the assumption of a complete sample, the likelihood of any candidate pedigree

G decomposes into a product of conditional probabilities. (The likelihood of G is the probability of the

observed data conditional on G being the true pedigree.) Letting Pa(v,G) denote the parents that v ∈ V

has in a pedigree G, this product can be represented as in (1) and so the log-likelihood, which is more

convenient to work with, can be represented as in (2).

L(G) = ∏
v∈V

α(v,Pa(v,G)) (1)

l(G) = logL(G) = ∑
v∈V

logα(v,Pa(v,G)) (2)

The problem of maximum likelihood pedigree reconstruction is that of finding G such that l(G) is max-

imised.

3 An integer programming encoding for ML pedigree reconstruction

In this section a method of encoding the maximum likelihood pedigree reconstruction problem as an

integer programming problem is presented. A first step towards the encoding is the simple observation

10
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that a pedigree specifies the parents, if any, of each individual. So given an individual v, a parent set W

and a pedigree G it is determined whether v has parents W in G. This is formalised using the functions

I(W → v) defined in (3), where W is implicitly restricted to be: W ⊆ V \ {v}, |W | ≤ 2. This restriction

on W will be assumed throughout to simplify the presentation.

I(W → v)(G) =

{

1 if v has parents W in G

0 otherwise.
(3)

The log-likelihood (2) of any pedigree can now be rewritten as in (4).

l(G) = ∑
v,W

logα(v,W )I(W → v)(G) (4)

Note that in (4), I(W → v)(G) only takes the value 1 when W = Pa(v,G). For any other value of

W , I(W → v)(G) = 0. The key to the integer programming encoding is to view the I(W → v) as binary

variables. Any particular pedigree G determines a joint instantiation of these binary variables, setting

exactly |V | = n of these binary variables to 1 and all others to 0. However, most joint instantiations of

the I(W → v) do not correspond to any pedigree. With this in mind the maximum likelihood pedigree

reconstruction problem can be reformulated as in (5).

Find an instantiation of the I(W → v) which maximises:

∑v,W logα(v,W )I(W → v)
subject to the I(W → v) representing a valid pedigree.

(5)

Because the variables in (5) are integer-valued and the objective function ∑v,W logα(v,W )I(W → v)
is linear in these variables this is an integer linear programming problem—as long as the necessary

constraints on the I(W → v) can be expressed as linear equations and inequalities. In the following

subsections it will be shown that this is indeed the case. (‘Integer linear programming’ will continue to

be abbreviated to ‘integer programming’ throughout.)

3.1 Constraints

The most basic constraint on the I(W → v) is that each individual v has exactly one parentset. This can

be expressed by n linear equations:

∀v : ∑
W

I(W → v) = 1 (6)

Any instantiation of the I(W → v) satisfying the equations given by (6) will represent a graph, but the

graph may contain directed cycles. To rule out cycles auxiliary variables are required. There are many

ways of ruling out cycles. The following sections present two possible approaches.

3.1.1 Ruling out cycles with a total order

For each distinct pair of individuals u,v a binary variable I(u < v) is created. I(u < v) = 1 indicates that

u is older than v (u’s birth was before that of v). Without loss of generality it can be assumed that no two

distinct individuals are of exactly the same age, so that exactly one is older than the other which makes

the order on the ages of the individuals a total order. This is expressed using the following n(n− 1)/2

equations:

∀u,v : I(u < v)+ I(v < u) = 1 (7)

11
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Note that (7) means that half of the I(u < v) variables are effectively redundant. However, it is more

convenient to work with the full complement of I(u < v) variables. This does not introduce inefficiency

since the IP solver will detect this redundancy and simplify the representation of constraints internally.

Note also that in (7) the obvious requirement that u 6= v has not been explicitly stated. This notational

convenience will be used throughout: whenever a constraint depends on more than one individual these

individuals will be distinct, but this will not be made explicit.

The total order must be transitive (if u < v, v < w then u < w). This can be represented by the

following n(n−1)(n−2)/3 constraints:

∀u,v,w : 1≤ I(u < v)+ I(v < w)+ I(w < u)≤ 2 (8)

Finally, the constraint that parents are older than their children needs to be expressed:

∀u,v : I(u < v)≥ ∑
W :u∈W

I(W → v) (9)

To see that (9) expresses this relation, suppose that u is a parent of v. In that case exactly one of the

I(W → v) on the RHS of (9) is 1 and thus the RHS is 1. To satisfy the inequality I(u < v) must also be 1.

3.1.2 Ruling out cycles with generation variables

An alternative approach associates a generation number with each individual in a pedigree. For a founder

this number is zero. For any other individual the generation number is the length of the longest path from

a founder to the individual. Let m denote the maximum generation number which is a value set by the

user to reflect any prior knowledge. In the absence of such knowledge m takes its maximal value n−1.

Let gen(v) denote the generation number of individual v. It is not difficult to see that if u is a parent

of v then gen(v)≥ gen(u)+1. This leads to the following set of n(n−1) constraints:

∀u,v : gen(v)−gen(u)≥−m+(m+1) ∑
W :u∈W

I(W → v) (10)

To understand (10) observe that if u is not a parent of v then the sum on the RHS is zero and the constraint

becomes vacuous. If u is a parent of v then the sum is 1 and so the entire RHS becomes 1, effecting the

desired constraint. To see that (10) suffices to rule out cycles note that if w is an ancestor of v then

gen(w) < gen(v). If a cycle obtains, at least two individuals are their own ancestors and the obvious

inconsistency arises. Thus as long as (10) is respected no cycles are possible.

Note that (10) does not fix the values of the gen(v) variables to their correct values. To see this,

suppose that n were, say, 10 and m set to 9, reflecting an absence of domain knowledge. Suppose that

an optimal pedigree were found with the highest valued generation variable having value 5. It would be

possible to increase each generation variable by one without violating (10). If our only concern is to rule

out cycles this is not a problem, but if it is necessary to ensure that the gen(v) variables take on their

correct values then additional constraints placing upper bounds on gen(v) are required.

3.1.3 Ensuring sex-consistency

Any instantiation of the I(W → v) variables satisfying constraints (6–9) or alternatively (10) will specify

an acyclic directed graph where each vertex has at most two parents, but not all such graphs represent

pedigrees. It is also necessary to ensure that a sex can be assigned to each individual in a consistent

manner. An example of an acyclic directed graph where this is not the case can be seen in Fig 1. Note

that this example was also given by [5]. Call such pedigrees sex-inconsistent.
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u1 u2 u3

v1 v2v3

Figure 1: A sex-inconsistent pedigree. It is not possible to consistently assign a sex to each individual.

To rule out sex-inconsistent pedigrees another n auxiliary binary variables I f (v) are created. I f (v) = 1

states that individual v is a female. Constraint (11) states that if an individual v has two parents at

most one is female and constraint (12) states that at least one is female. Note that in both cases, if

I({u,w}→ v) = 0 then the constraints are vacuously satisfied.

∀u,v,w : I({u,w}→ v)+ I f (u)+ I f (w)≤ 2 (11)

∀u,v,w : I({u,w}→ v)− I f (u)− I f (w)≤ 0 (12)

With all these constraints in place, the maximum likelihood pedigree reconstruction problem can be

restated as follows:

Maximise: ∑v,W logα(v,W )I(W → v)
subject either to (6–9,11,12) or (6,10,11,12).

(13)

4 Results

All results shown here were produced using a 3GHz dual-core Linux machine with the Gurobi IP solver

[8]. A number of tests (not reported here) have also been done with SCIP [1] which produced respectable

running times which were nonetheless clearly longer than those produced by Gurobi (which automati-

cally parallelises solving on multi-core machines).

Only synthetic genotype data sampled from test pedigrees has been used. This sampling process

mimics the inheritance of genotypes from parent to offspring, which is probabilistic, and thus different

datasets will be sampled from a given pedigree depending on which random seed is being used. Data was

created in this way using the the C++ program pedsim used to produce the results in [5]. pedsim was

also used to compute the log conditional probabilities logα(v,W ) from each of these synthetic datasets,

and then to remove logα(v,W ) scores where there exists a higher logα(v,W ′) score with W ′ ⊂W . Such

scores and their accompanying I(W → v) variables are not needed since in such a case v would never

have parents W in the maximum likelihood pedigree. A Python script (available on request from the

author) was used to read in the (filtered) logα(v,W ) scores from pedsim. Gurobi’s Python interface was

then used to define and solve the optimisation problem (13). The following sections present results for a

number of synthetic pedigree reconstruction problems.

4.1 Pedigree reconstruction for 20 individuals using a total order

The data for this experiment was chosen to be the same (modulo sampling variation) as that of one of

Cowell’s [5]. The same software (pedsim) was used to generate genotypic data from one of Cowell’s

13



ML pedigree reconstruction using IP Cussens

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

Figure 2: Pedigree of 20 individuals. This pedigree is [5, Fig 3].

test pedigrees (Fig 2). Ten marker loci were used. Although the data is synthetic, the markers correspond

to real ones. Allele values and founder allele frequencies were taken from [4].

A thousand datasets were sampled and the time taken to find a maximum likelihood sex-consistent

pedigree in each case was recorded. Total order constraints were used in each case. The mean solving

time was 0.65 seconds with the slowest run taking 17.3 seconds. Only 8 runs took longer than 4 seconds.

4.2 Pedigree reconstruction for 46 individuals using a total order

An experiment identical to that described in Section 4.1 except using a test pedigree of 46 individuals

was then carried out. This pedigree was created by editing the source of Cowell’s pedsim program and

is displayed in Fig 3. Only 10 runs were attempted since solving time is substantially higher than for the

20 individuals case. The solving times for the first 9 runs were, in decreasing order: 20,566s, 7,470s,

4,266s, 1,175s, 722s, 669s, 115s, 59s and 51s. The 10th run was abandoned after failing to identify the

maximum likelihood pedigree after 44,135s. The very high variation in solving times is notable. Most

datasets produced optimisation problems which could be solved in a reasonable time, but in some cases

solving was unacceptably lengthy. Problems of this size are too large for the approach of [5].

Two further experiments were conducted for the 46-individual pedigree. In the first an extra con-

straint specifying that there must be at least 20 founders in the pedigree was added. 80 runs were done

with this extra constraint. The mean solving time was 18 seconds with 75% of runs below 20 seconds

and the slowest taking 128 seconds. In the second experiment a more reasonable constraint on founders

was used: that the number of founders was between 10 and 20. 100 runs were done with this constraint.

The mean solving time was 34s, with 75% within 30s and the slowest taking 613 seconds.

4.3 Pedigree reconstruction for 46 individuals using generation variables

Although using a total order to rule out cycles in pedigrees produced acceptable results for small numbers

of individuals, it is clear that for bigger problems finding a maximum likelihood pedigree is unacceptably

slow. Fortunately, switching to using generation variables to rule out cycles as described in Section 3.1.2

results in a significant speed up.

In an initial experiment 100 synthetic datasets were generated from the 46-individual pedigree shown

in Fig 3. 19 runs completed successfully, taking a mean time of 432 seconds, but a median time of only
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m1 f2 m3 f4

f9

m6

m30

m34

f41

f6 m5 m8f7

m22f23m9

m10

f19m20 f21f11 m24

f12 m13 f14 m32 f33m19 f20 f31

m42

f43

f45

f47m15m17 m44 m46f16f18

m54 f55m56f57 m58f59

Figure 3: Test pedigree of 46 individuals.

2.2 seconds. The distribution of solving times for these 19 runs was thus highly skewed with the five

longest runs taking 7349, 810, 20, 9 and 4 seconds and each of the 6 quickest taking less than a second.

However, on the 20th run, Gurobi ran out of memory.

This problem could probably be addressed by instructing Gurobi to use the hard disk when (RAM)

memory is exhausted, but this would lead to much slower solving. Instead an extra constraint was added

in the hope of both speeding up solving and reducing memory consumption. This constraint stated that in

each pedigree there is at least one founder. Since this is always true (due to the acyclicity of pedigrees) a

maximum likelihood pedigree will still be returned, but hopefully more quickly. This founder constraint
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LB Time in seconds Likelihood

0 3189.75858617 -6.3680054000e+02

1 1050.95497108 -6.3680054000e+02

2 1695.93844795 -6.3680054000e+02

3 2350.830338 -6.3680054000e+02

4 1220.98797202 -6.3680054000e+02

5 431.202931166 -6.3680054000e+02

6 246.708929062 -6.3680054000e+02

7 63.2229361534 -6.3680054000e+02

8 3.00327396393 -6.3680054000e+02

9 0.523219823837 -6.3933824000e+02

10 0.293282032013 -6.5144025000e+02

Table 1: Solving times for different lower bounds on the number of founders. ‘Likelihood’ is the likeli-

hood of a maximum likelihood pedigree with the given bound.

is formally expressed as follows:

∑
v

I({}→ v)≥ 1 (14)

With the founder constraint added 100 runs were attempted (i.e. 100 datasets were simulated and

maximum likelihood pedigrees were found for each) and all completed successfully. The mean solving

time was 195 seconds and the median was 3.8 seconds. As usual there was therefore a highly skewed

distribution of solving times with the ten slowest runs taking the following number of seconds: 8181,

7361, 1638, 830, 309, 249, 127, 118, 110 and 45.

To investigate the effect of increasing the lower bound on the number of founders above one, a

particular dataset simulated from the pedigree in Fig 3 was used. This dataset was chosen since it is one

of the ‘harder’ ones resulting in reasonably long solving times. A maximum likelihood pedigree for this

data is shown in Fig 4.

As Table 1 makes clear, increasing the lower bound on the number of founders makes a big difference

in the time it takes to find a maximum likelihood pedigree. Note, from Fig 4, that at least one maximum

likelihood pedigree has 8 founders (m1, f2, m3, f4, f9, m6, f41 and m30). Using 8 as a lower bound

on the number of founders solving takes only 3 seconds. Higher lower bounds reduce the solving time

further but the pedigree returned is no longer of maximum likelihood as shown by the third column in

Table 1. Importantly, raising the lower bound from 0 (which amounts to removing the constraint) to 1

reduces the solving time drastically. Also, interestingly, using lower bounds of 2, 3 or 4 actually increases

the solving time compared to a lower bound of 1, but all are still quicker than using no lower bound.

4.4 Pedigree reconstruction for 59 individuals using generation variables

An experiment was done to provide as direct a comparison as possible with Almudevar’s simulated

annealing approach [2]. Datasets were simulated from Almudevar’s 59 individual pedigree [2, Fig 2]

and as in that paper ten marker loci were used each with 8 equally frequent alleles. Generation variables

were used to rule out cycles and the (always admissible) constraint that there is at least one founder was

used.

Maximum likelihood pedigrees were obtained from 1000 simulated datasets. The mean solving time

was 0.44846 seconds, the median 0.2350 and 75% of runs completed within 0.43860 seconds. A few

much longer runs occurred, with one of length 15.26 seconds. The distribution of the 1000 solving
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m1 f2 m3 f4
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m6

m30

m34

f41

f6 m5 m8f7
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m10
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f12 m13 f14 m32 f33m19 f20 f31

m42

f43

f45

f47m15m17 m44 m46f16f18

m54 f55m56f57 m58f59

Figure 4: A maximum likelihood pedigree of 46 individuals for a particular dataset simulated from the

pedigree in Fig 3

times is shown as a box plot in Fig 5 It is notable that solving times are substantially faster on this 59

individual pedigree than for the 46 individual pedigree previously discussed. This is most probably due

to the assumption of equally frequent (i.e. equally probable) alleles for each of the ten marker loci. This

means that genotypic data is more informative than is the case where the distribution is (realistically)

skewed as is the case with Cowell’s ten marker loci data (Markus Riester, personal communication).

Comparing running times to Almudevar [2], there it is stated that for the quickest configuration the time

taken for the simulated annealing algorithm to converge “was approximately 6.6 min using a standard

personal computer”. Note also that simulated annealing does not guarantee that the pedigree found has

maximal likelihood.

17



ML pedigree reconstruction using IP Cussens

0 5 10 15

Solving time (seconds)

Figure 5: Boxplot representation of the distribution of 1000 maximum likelihood pedigree reconstruction

solving times for datasets simulated from Almudevar’s 59 individual pedigree.

5 Conclusions and future work

Results on finding pedigrees which are guaranteed to have maximal likelihood using IP have been pre-

sented in this paper. The results compare favourably with others in the literature as regards scalability,

speed and ensuring sex-consistency (however Riester et al [11] report on reconstructing pedigrees from

thousands of individuals using simulated annealing).

In this paper the focus is on how best to do maximum likelihood pedigree reconstruction, but there

is also the entirely distinct question of whether maximising likelihood is the best way to reconstruct

pedigrees. With large amounts of data maximum likelihood usually provides a reasonable estimate of

the true pedigree. So, for example, comparing the 1000 maximum likelihood pedigrees discussed in

Section 4.4 to the true data-generating pedigree [2, Fig 2] we find that 533 of them are exactly equal to

the true pedigree. The full distribution of parent assignment errors is shown in Fig 6.

Nonetheless the alternative Bayesian approach allows the incorporation of domain knowledge and

allows a principled way of quantifying the uncertainty inherent in pedigree reconstruction (model un-

certainty). In an IP formulation the prior distribution is represented by incorporating extra terms in the

objective function. Model uncertainty is addressed by finding many distinct high probability pedigrees

rather than returning a single one. Work is currently underway on such a Bayesian approach.
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Aurélie Favier, Jean-Michel Elsen, Simon de Givry, Andrés Legarra

INRA, Toulouse, France

{afavier,jean-michel.elsen,degivry,andres.legarra}@toulouse.inra.fr

Abstract

In the goal of genetic improvement of livestock by marker assisted selection, we aim at recon-

structing the haplotypes of sires from their offspring. We reformulated this problem into a binary

weighted constraint satisfaction problem. Our results showed these problems have a small treewidth

and can be solved optimally, improving haplotype reconstruction compared to previous approaches

especially for medium-size half-sib families.

1 Introduction

Haplotype-based analysis plays an important role in genetics, including study of a population, associ-

ation mapping, and linkage / association analysis. However haplotypes of diploid individuals cannot

easily be acquired and only unphased genotype data can be obtained through application of experimental

techniques. It is therefore necessary to propose efficient haplotype reconstruction methods from geno-

type data, able to cope with a large number of dense markers such as single nucleotide polymorphisms

(SNPs). Di-allelic SNPs are mutations at single nucleotide positions taking two values (e.g., allele A or

B), and are the most prevalent sequence variations between individuals of all species. The combination

of marker alleles on a single chromosome is called a haplotype. The combination of unordered pairs of

alleles on homologous chromosomes is called a genotype.

There are two main sources of genotype data for haplotype inference: coming either from a popu-

lation of unrelated individuals, or from a pedigree, which gives the parental relationships between indi-

viduals [13]. We are interested in the latter case where large pedigrees of livestock are available. Two

categories of methods exist: statistical methods [1, 12, 18, 8, 17, 7] and rule-based methods [10, 14, 6].

The latter often assume zero recombinants or are more appropriate for pedigree data with a small ex-

pected number of recombinations, such as high density marker data in a short chromosomal region. The

problem is NP-hard, even in the case of tree pedigree and no missing data [6]. Exact (i.e., complete)

methods [1, 6, 8] have their worst-case time complexity exponential in the minimum between the num-

ber of individuals and the number of markers. Another option is the use of approximate methods such as

greedy and iterative search methods [10, 14, 18, 7] or Monte-Carlo methods [17].

There is a need in animal genetics for exact and fast methods for haplotype reconstruction: current

data in cattle genetics consists of thousands of individuals and tens of thousands of markers. We propose

a new statistical exact method for haplotype inference from genotypes on such large pedigree data under

the Mendelian laws of inheritance and the probability of recombination events.

Mendel’s laws involved are very simple: there is one marker allele coming from each of the parents,

and, for a given marker, the copy that the parent transmits to its progeny is picked up at random. So,

in some cases the determination of allele origin is very simple. For example, if a father/sire has an ho-

mozygous (i.e., same alleles) genotype AA at one marker, and his son has an heterozygous (i.e., different

alleles) genotype AB, then with certainty allele A in the son came from the father.

The second law involved is the probability of recombination events. Recombination events are pro-

duced by meiosis, which is a complicated biological phenomenon. However, genetic maps have been

built that condense the probability of recombination (or recombination fraction) between any two points

in a chromosome, aka two loci, into a linear metric, usually the Haldane’s mapping function, assum-

ing no interference in the formation of crossing-overs. For instance, if the mother/dam haplotypes on
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three loci are AA and BB, then the probability of the transmitted AB gamete to her son is simply the

recombination fraction between loci 1 and 2 divided by 2.

Now, haplotype inference is explained on a simple example. Assume a family of two parents and one

offspring. The genotype of the father for two SNPs is AB AB (recall that the allele order in a pair doesn’t

matter), and the genotype of the mother is BB AA. The mother haplotypes are trivial (both haplotypes

are BA); however the father has two possible sets of haplotypes (AA and BB, or AB and BA). Assume

that one son has genotype AB AB. For this son, B in the first locus and A in the second came from the

mother (because there is no other possibility) and they form a first haplotype BA. Thus, AB constitutes

the other haplotype that came from the father. Now, if the recombination fraction between the two loci

is less than 0.5 (roughly if they are on the same chromosome), probably the father transmitted haplotype

AB with no recombination; thus, its haplotypes are AB and BA.

In Section 2, we present an efficient method to reconstruct the haplotypes of the sire from the infor-

mation of its genotype and of its offspring genotypes in a half-sib family (each son has a different dam).

This particular pedigree is common in livestock genetics for marker assisted selection. Further, once the

sire haplotypes are reconstructed, and conditionally to this configuration, the haplotypes of its sons are

easy to compute [7]. Assuming linkage equilibrium (i.e., random association of alleles at two or more

loci) and equal allele frequencies at every locus, our method reformulates the likelihood of genotype

data in a compact way, resulting in a binary weighted constraint satisfaction problem [11], which can be

maximized later by a systematic search method or by a dynamic programming algorithm, exploiting the

small treewidth of the resulting instances.

Section 3 gives experimental results on simulated and real datasets. In this study, we assumed no

missing data (except the dams) and no erroneous genotypes. However, we could impute missing sire

genotype data from its offspring, removing beforehand Mendelian errors [15].

2 Method

Assume a single half-sib family, the sire and its n descendants are genotyped at L loci but not the

dams. Let M be a matrix such that Mi
l,1,M

i
l,2 are the observed genotype information of individual i

(i ∈ {0,1 . . . ,n}, with index 0 for the sire) at locus l (l ∈ {1, . . . ,L}) for its two alleles (Mi
l, j ∈ {A,B}, j ∈

{1,2}) with an arbitrary order. For convenience, in the following examples, the genotype of an individual

i is given by a list of pairs of alleles, e.g., Mi = AB AA BA means Mi
1,1 = A,Mi

1,2 = B,Mi
2,1 = A,Mi

2,2 =

A,Mi
3,1 = B,Mi

3,2 = A.

Let now define vector h (hl ∈ {−1,1}, l ∈ {1, . . . ,L}) as the indicator of allele origin for the sire

haplotypes. hl has two possible states: hl = 1 (resp. hl =−1) if the first haplotype has allele M0
l,1 (resp.

M0
l,2) and the second haplotype has allele M0

l,2 (resp. M0
l,1) at locus l. For instance, a sire genotype

observed at three loci such that M0 = AB AA BA and h = (1,1,−1) implies that the first sire haplotype

is AAA and the second one is BAB. The problem to solve is to find the most probable assignment of

h given the observed genotypes. Note that the assignment of hl with homozygous sire locus l does not

matter, it is set to 1.

Instead of using the observed genotypes in our probabilistic model directly, we will use an interme-

diate data that is sufficient to model meiosis events. Let T be a matrix such that indicator variable T i
l ,

called the transmission value, defines the origin of the paternal allele at locus l (l ∈ {1, . . . ,L}) in the i-th

descendant (i ∈ {1 . . . ,n}). This origin is referred to the genotype information in the sire (M0
l,1,M

0
l,2), not

to its haplotypes. T i
l has three possible states: T i

l = 1 (resp. T i
l = −1) if the paternal allele of the i-th

descendant comes from the first allele M0
l,1 (resp. the second allele M0

l,2), or T i
l = ⋆ if the origin of the

paternal allele is unknown. Let Ti be the transmission vector (T i
1 , . . . ,T

i
L).
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Variable T i
l is known with certainty (i.e., T i

l is -1 or 1) if and only if the i-th descendant is homozygous

and the sire is heterozygous at locus l. Otherwise, T i
l is unknown (T i

l = ⋆). Remember that the dam

genotypes are assumed to be unknown. For example, if the descendant is AA and the sire BA, it is

necessary that A in the descendant came from the second allele of the sire, so T i
l =−1.

A locus l such that T i
l 6= ⋆ is called an informative locus for the i-th descendant. A preceding in-

formative locus k of l is the first informative locus found in the order from l− 1 to 1. The set of pairs

of consecutive informative loci is composed of all the pairs of informative loci with their corresponding

preceding informative locus.

Example 1. Consider a sire with three sons from three different dams. Only the sire and the sons are

genotyped on seven loci such that M is given by:

M
0 : AB BB AA BA BA AA AB

M
1 : BB BA AA AA BB AB BB

M
2 : BA BB AB AA BB AA AA

M
3 : AA BB AA AB AA AB AA

Construction of transmission vectors. The sire is homozygous at loci 2,3 and 6, so for these loci

the transmission value is ⋆ for each son. For the other loci, the sire is heterozygous, so we study the

genotypes of the sons to complete the transmission vectors. We detail for son 2. At locus 1, the son

is heterozygous as the sire so we do not know with certainty which of the alleles (M0
1,1 or M0

1,2) was

transmitted: T 2
1 =⋆. At locus 4, the son is AA and the sire is BA, so it is certain that the sire transmits the

second allele (M0
4,2) : T 2

4 =−1. At locus 5, the son is homozygous BB and the sire is BA, so it is certain

that the sire transmits the first allele (M0
5,1) : T 2

5 = 1. It is the same reasoning at locus 7.

Finally matrix T is equal to:

M
0 AB BB AA BA BA AA AB

T
1 : -1 ⋆ ⋆ -1 1 ⋆ -1

T
2 : ⋆ ⋆ ⋆ -1 1 ⋆ 1

T
3 : 1 ⋆ ⋆ ⋆ -1 ⋆ 1

The set of informative loci of son 1 is {1,4,5,7} and its set of pairs of consecutive informative loci

is {(1,4),(4,5),(5,7)}. It is {4,5,7} (resp. {1,5,7}) and {(4,5),(5,7)} (reps. {(1,5),(5,7)}) for son 2

(resp. son 3).

To summarize, h are the decision variables and T the observations used in our model. The posterior

probability of the haplotypes is given by

p(h|T) =
p(T|h).p(h)

∑h′ p(T|h′).p(h′)

In the absence of prior information for h, i.e., assuming linkage equilibrium, p(h|T) ∝ p(T|h) and

the most likely haplotype configuration is the one that maximizes p(T|h).
Because meiosis events producing each descendant are independent,

p(T|h) =
n

∏
i=1

p(Ti|h)

Applying the chain rule, we obtain also

p(Ti|h) =
n

∏
i=1

p(T i
1 |h).p(T

i
2 |h,T

i
1).p(T

i
3 |h,T

i
1 ,T

i
2) . . . p(T i

L|h,T
i

1 , . . . ,T
i

L−1)
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These probabilities are defined in an iterative way starting from l = 1. For the first position, p(T i
1 |h)=

0.5 if T i
1 equals to either -1 or 1 (i.e., p(T|h) = p(T|−h)), and p(T i

1 |h) = 1 if T i
1 = ⋆. The same applies

for a series of ⋆’s up to the first T i
l 6= ⋆. For any next position, two cases can be distinguished. For T i

l = ⋆,

p(T i
l |h,T

i
1 , . . . ,T

i
l−1) = 1 because it is a complete set of events. For T i

l 6= ⋆, assuming no interference in

the formation of crossing-overs and equal allele frequencies at each locus, only the current informative

locus l and the preceding informative locus k of l are used, p(T i
l |h,T

i
1 , . . . ,T

i
l−1) = p(T i

l |hk,hl,T
i

k ) (if l

is the first informative locus, p(T i
l |h,T

i
1 , . . . ,T

i
l−1) = 0.5). This is so because, assuming independence

of crossing-over, the probability of recombination between k and l does not depend on the presence or

not of previous recombinations between 1 and k. And because any ⋆ between k+ 1 and l− 1 does not

modify the likelihood, assuming all SNPs have equal allele frequencies, and so, transmitted alleles from

the dams to their sons do not matter. Thus, only informative loci (transmission values) in Ti are used.

Let rkl denote the recombination fraction between k and l, obtained by the Haldane mapping func-

tion from the known marker map (rkl ∈ [0,0.5]). A pair of alleles placed on the same chromosome in the

sire at locus k and l will be transmitted together (no recombination) with a probability 1− rkl; the op-

posite (transmitted alleles come from a recombination between homologous chromosomes) occurs with

frequency rkl .

Thus, p(T i
l |hk,hl,T

i
k ) = (1− rkl) in two cases: if T i

l = T i
k and hl = hk , or if T i

l 6= T i
k and hl 6= hk.

Both indicate the same sire haplotype origins for these two loci in the i-th descendant. In any other case

(different origins), p(T i
l |hk,hl,T

i
k ) = rkl . An algebraic form of p(T i

l |hk,hl,T
i

k ) is r1−a
kl × (1− rkl)

a, where

a measures the same origin (a = 1) or not (a = 0). We have a = ai
kl(h) =

1
2
+ 1

2
hkhl

T i
k T i

l

.

The log-likelihood of h can be expressed as

V=log [p(T|h)] =
n

∑
i=1

log
[

p(Ti|h)
]

=
n

∑
i=1

L

∑
l=1

log
[

p(Ti
l|h,T

i
1 , . . . ,T

i
l−1)

]

=n log

(

1

2

)

+
n

∑
i=1

∑
l∈Ii

[(

1−ai
kl(h)

)

log(rkl)+ai
kl(h) log(1− rkl)

]

(1)

where Ii is the set of informative loci for the i-th descendant (except the first informative locus the

contribution of which is log(1
2
)), and k the preceding informative locus of l. A rewriting of equation 1 as

a quadratic form in h allows a sparse representation, which is computationally easier to manipulate:

V = K +
L

∑
l=1

∑
k<l

1

2
hkhl log

(

1− rkl

rkl

)

∑
i∈{1,n} s.t. (k,l)∈Fi

1

T i
k T i

l

(2)

where K = n log
(

1
2

)

+∑
n
i=1 ∑l∈Ii

1
2

log [(1− rkl)rkl] and Fi is the set of pairs of consecutive informative

loci in the i-th descendant.

Therefore V can be expressed as a quadratic form: V = K+h′Wh with a symmetric L×L matrix W

such that

Wll = 0 and Wkl =Wlk =
1

4
log

(

1− rkl

rkl

)

∑
i∈{1,n} s.t. (k,l)∈Fi

1

T i
k T i

l

Let N+
kl (respectively N−kl ) be the number of descendants such that each descendant i has T i

l = T i
k (resp.

T i
l 6= T i

k ) and (k, l) is a pair of consecutive informative loci for this descendant.

Finally,

Wkl =
1

4
(N+

kl −N−kl ) log

(

1− rkl

rkl

)

(3)

Example 2. Consider Example 1, we now compute N+
kl and N−kl for every pair of consecutive informative

loci occuring in at least one descendant. We obtain N+
1,4 = 1 due to son 1 (T 1

1 = T 1
4 ), N−1,4 = 0, N+

1,5 = 0,
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N−1,5 = 1 due to son 3 (T 3
1 6= T 3

5 ), N+
4,5 = 0, N−4,5 = 2 due to sons 1 (T 1

4 6= T 1
5 ) and 2 (T 2

4 6= T 2
5 ), N+

5,7 = 1

due to son 2 (T 2
5 = T 2

7 ), and finally, N−5,7 = 2 due to sons 1 (T 1
5 6= T 1

7 ) and 3 (T 3
5 6= T 3

7 ). Others N+
kl and

N−kl are all equal to zero.

2.1 Weighted constraint satisfaction formulation

This quadratic form can be directly translated into a binary Weighted Constraint Satisfaction Problem

(WCSP) [11].

A binary WCSP is a pair (X ,F) where X = {1, . . . ,m} is a set of m variables and F a set of binary

cost functions. Each variable i ∈ X has a finite domain Di of values than can be assigned to it. A binary

cost function fi j ∈ F is a function fi j : Di×D j 7→N where N is the set of non-negative integers. The

constraint graph of a binary WCSP is a graph G = (X ,E) with one vertex for each variable and one edge

(i, j) ∈ E for every cost function fi j ∈ F .

The weighted constraint satisfaction problem is to find a complete assignment t of all the variables

minimizing the total cost function ∑ fi j∈F fi j(t[i], t[ j]) where t[i] is the value assigned to variable i in t.

This problem is NP-hard.

State-of-the-art WCSP exact (i.e., complete) solving methods are either Depth-First Branch and

Bound (DFBB) exploiting local consistency techniques [11] or dynamic programming algorithms such

as bucket elimination, aka Variable Elimination (VE) [5] or a combination of both approaches such as

Backtrack with Tree Decomposition (BTD) [9, 3].

We have the following WCSP formulation of our haplotyping problem. We define X = {1, . . . ,L} the

set of m = L variables with domain Di = {−1,1}, i ∈ {1, . . . ,L}. Each WCSP variable i corresponds to a

decision variable hi of our problem. The set of binary cost functions is defined by F = { fkl|Wkl 6= 0,k <

l}. Each cost function fkl represents two terms −Wkl and −Wlk of the symmetric matrix W (Wkl =Wlk)

in the quadratic form h′Wh (we use opposite terms for minimization). Because cost functions must be

positive, where as −Wkl may be negative, a constant term 2|Wkl| is added to each cost function1. Thus,

fkl(hk,hl) =−2Wklhkhl +2|Wkl|, or equivalently,

fkl(−1,−1)
fkl(1,1)

=

{

−4Wkl if Wkl < 0

0 otherwise

fkl(−1,1)
fkl(1,−1)

=

{

4Wkl if Wkl > 0

0 otherwise

Notice that these functions are soft versions of disequality (if Wkl < 0) and equality (if Wkl > 0)

constraints.

For any complete assignment h, we have ∑ fkl∈F fkl(hk,hl) ∝ V (see Equation 2). Thus, an optimal

solution of WCSP (X ,F) corresponds to the most likely haplotype configuration.

Consider Example 1 again, the constraint graph is given below.

h1 h2 h3 h4 h5 h6 h7

2.2 Extension to the case of genotyped dams

In the case we know the genotypes of the dams, then we can take into account this extra information, by

extending our definition of transmission values (without changing anything else). Variable T i
l is known

1In order to get integer costs, we also multiply each cost function by a sufficiently large number and take the smallest

following integer, such that it does not change the set of optimal solutions.
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with certainty if and only if the i-th descendant is homozygous and the sire is heterozygous at locus l or

the i-th descendant and the sire are heterozygous and the dam is homozygous at locus l (i.e., T i
l is -1 or

1); otherwise T i
l is unknown (T i

l = ⋆). For example, if the descendant is AB, the sire BA and the dam

AA, it is necessary that B in the descendant came from the first allele of the sire, and thus T i
l = 1.

Example 3. Consider Example 1 again, we add the information of genotyped dams. Let M
di be the

genotypes of the i-th dam of the i-th descendant.

M
d1: AA AB AB BB AA BA AB

M
d2: AB BA BB AB AB AA AB

M
d3: AA BA AB AA AB BA AA

M
0 AB BB AA BA BA AA AB

T
1 : -1 ⋆ ⋆ -1 1 ⋆ -1

T
2 : ⋆ ⋆ ⋆ -1 1 ⋆ 1

T
3 : 1 ⋆ ⋆ 1 -1 ⋆ 1

For son 2 at locus 1, the transmitted allele from the sire is not identifiable (the son, sire, and dam are

heterozygous). So, T 2
1 is still equal to ⋆. For son 3 at locus 4, the transmitted allele from the sire can be

identified: the son and sire are heterozygous AB and BA respectively, and the dam is homozygous AA, so

it is certain that the dam transmitted allele A and the sire transmitted allele B, and thus T 3
4 = 1. For this

example, it is the only modification of the transmission values with respect to Example 1. N+ and N− are

kept unchanged, except for N+
1,4 = 2, due to sons 1 (T 1

1 = T 1
4 ) and 3 (T 3

1 = T 3
4 ). Finally, the constraint

graph is the same as in Example 1.

3 Experimental Results

3.1 Datasets and methods

A first dataset2 consists of half-sib families which were simulated by considering either linkage disequi-

librium at the sire/dams or not. In the former case, disequilibrium was generated first by simulating a

Wright-Fisher scenario with 100 individuals mating at random during 100 generations; the sires and the

dams haplotypes were sampled from the last generation. In both cases, the founders were simulated in

linkage equilibrium and using a Beta distribution (α = 2,β = 2) of allele frequency similar to the one

observed in bovine livestock. Recombination events on a single chromosome of S ∈ {1,2}Morgan were

simulated using Haldane’s mapping function, producing sons haplotypes. Genotypes were obtained by

randomly permuting the two alleles at every locus of every pair of haplotypes. The number of SNPs

L varied from 100 to 10000. These markers were evenly-spaced on the chromosome. The number of

descendants n varied from 1 to 1000. 50 families were simulated for each set of parameters.

A second dataset2 was built in the same way, but taking 44 real haplotypes of the father chromosome

X in 44 trios of CEU population (see HAPMAP phase 3 release 2 project at www.hapmap.org) as initial

sire/dams haplotypes. Because only 1 copy of chromosome X is present in males, its haplotype is known

with certainty. This dataset provides a real pattern of linkage disequilibrium, contrary to simulated

datasets. We selected L = 36000 SNPs such that for each locus the two alleles occured in our data.

These markers were evenly-spaced on the chromosome of S = 1.64 Morgan.

Five haplotyping methods/softwares were studied. Exact methods are Merlin [1] version 1.1.2 ;

Superlink [8] version 1.6 ; and our approach implemented in WCSP solvers toulbar2 version 0.9.2

(for DFBB [4] used by default, and BTD [3]) and toolbar version 3.1 (for VE [5])3. Approximate meth-

ods are W&M [18] (implemented by us in R language) and LinkPhase [7] with parameters recommended

by the authors and with unreconstructed loci fixed arbitrarily in a post-processing step. All the tested

2carlit.toulouse.inra.fr/cgi-bin/awki.cgi/HaplotypeInference
3carlit.toulouse.inra.fr/cgi-bin/awki.cgi/ToolBarIntro
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methods except ours reconstruct all the individuals haplotypes. However, knowing the sire haplotypes, it

is easy to find the most probable haplotypes for each son and its dam in linear time O(L).
The experimentations were performed on a 2.6GHz Intel Xeon computer running Linux 2.627-11-

server with 64 GB. These methods were compared in terms of the percentage of switch error [16],

which measures the proportion of heterozygous loci whose allele origin (first or second sire haplotype)

is wrongly inferred relative to the previous heterozygous locus ; and the CPU solving time in seconds.

Reported results are mean over 50 families.

3.2 Comparison with exact methods

We compared our approach toulbar2 with two exact methods, Merlin [1] and Superlink [8], vary-

ing the number of descendants in the first dataset without linkage disequilibrium and without genotyped

dams. Figure 1(a) shows experimentally that these three methods find the same optimal sire haplotype

configuration if we assumed all SNPs have equal allele frequencies for all the methods (option -fe in

Merlin and given as input in .DAT file for Superlink)4. The switch error (Fig. 1(a)) decreases rapidly

with the number of descendants. It is less than 1% (resp. 6%) for n = 7 (resp. 4) descendants. If we pro-

vide the true allele frequencies, Superlink found better sire haplotypes for small families and Merlin

did not improve its results (because it does not fully reconstruct ungenotyped dam haplotypes). Merlin

and Superlink are dynamic programming algorithms which have their time and space complexity in-

creasing exponentially with the number of descendants. Superlink ran out of memory for more than 7

descendants. Merlin took more than 150 seconds for 22 descendants whereas toulbar2 using default

depth-first branch and bound (DFBB) took less than a second (Fig. 1(b)).
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Figure 1: Comparison with exact methods for S = 1,L = 1500,n ∈ [1,30].

4In fact, there may be several optimal solutions and each method can find a different one resulting in small differences in

terms of switch error (Merlin may output two solutions and we took the first one in our results).
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Figure 2: Comparison with approximate methods for S = 1,L = 1500,n ∈ [4,100].

3.3 Comparison with approximate methods

We compared toulbar2 with two approximate methods, W&M [18] and LinkPhase [7], on the same

dataset as in the previous section. LinkPhase required families of about twenty individuals to reconstruct

entirely the sire haplotypes and to find the true haplotypes (Fig. 2(a)). For instance, with 4 descendants,

LinkPhase did not reconstruct one third of the heterozygous loci; instead, toulbar2 reconstructed

all the sire haplotypes with 73% less of switch errors compared to LinkPhase. Moreover, toulbar2

is guaranteed to find an optimal haplotype configuration. The convergence of W&M towards the true

haplotypes was much slower compared to the two other methods. Furthermore, while LinkPhase and

toulbar2 (DFBB) solved every family within one second, W&M computing time grew linearly with the

number of descendants (Fig. 2(b)).

3.4 Comparison with and without linkage disequilibrium

If we consider linkage disequilibrium, the mean switch error (Fig. 3(a)) is slightly better than without

linkage disequilibrium, but the variance is much higher. This phenomenon may be due to the reduced

number of different (sire and dams) haplotypes, resulting in less heterozygous markers (≈ 40% less than

wout LD).

3.5 Study of the treewidth of our WCSP formulation

In order to assess the difficulty of the resulted WCSP instances of our first dataset (without linkage

disequilibrium), we measured the treewidth of their constraint graph [2]. The treewidth of a graph gives

an idea of its acyclicity (a tree as a treewidth of 1). Dynamic programming algorithms (VE [5] and BTD

[3], but not DFBB) exploiting the WCSP formulation have their time and space complexity exponential

in the treewidth (DFBB being exponential in the number of variables). Figure 3(b) shows the average

treewidth obtained by a variable elimination order following the chromosome order. We noticed the
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Figure 3: (a) Comparison with/w. out linkage disequilibrium for S = 1,L = 1500,n ∈ [1,10] using

toulbar2. (b) Constraint graph analysis of our WCSP formulation (S = 2).
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Figure 4: Human chr. X dataset w/wout genotyped dams (L = 36000,n ∈ [1,15]).

treewidth remains relatively small (the maximal treewidth found in all our simulations was 30) and it

seems to increase logarithmically with the number of individuals and the number of markers. We can

conclude that the resulting WCSP instances are easy to solve by any dynamic programming algorithm.

Therefore, we used VE and BTD instead of DFBB on very large datasets as done in the next section.
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3.6 Comparison with and without genotyped dams on human chromosome X dataset

Using our second real dataset, we found the switch error was less than 1% (resp. 4%) for n = 6 (resp. 4)

descendants (Fig. 4(a)), which is similar to our first dataset. By exploiting the additional information of

genotyped dams, only 3 descendants are needed to reconstruct the sire haplotypes with less than 1% of

switch error. Concerning performance (Fig. 4(b)), toolbar VE and toulbar2 BTD performed similarly

with or without the genotyped dams, although VE was much faster but needed more space than BTD. On

the contrary, LinkPhase time increased linearly with the number of descendants in the case of genotyped

dams. The treewidth was 11 in average.

4 Conclusion

In this paper, we have proposed a sparse representation (with a small treewidth) of sire haplotype recon-

struction in half-sib families and a method which finds an optimal haplotype configuration. This method

obtained good results, in terms of accuracy and time, on simulated and real datasets.

In the future, we will improve our results for small families with linkage disequilibrium and study

other kinds of pedigrees.
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Abstract

Sequence-structure alignment of RNA with arbitrary secondary structure is Max-SNP-hard. Therefore,

the problem of RNA alignment is commonly restricted to nested structure, where dynamic programming

yields efficient solutions. However, nested structure cannot model pseudoknots or even more complex struc-

tural dependencies. Nevertheless those dependencies are essential and conserved features of many RNAs.

Only a few existing approaches deal with crossing structures. Here, we present a constraint approach for

alignment of structures in the even more general class of unlimited structures. Our central contribution is a

new RNA alignment constraint propagator. It is based on an efficient O(n2) relaxation of the RNA alignment

problem. Our constraint-based approach Carna solves the alignment problem for sequences with given input

structures of unlimited complexity. Carna is implemented using Gecode.

In the post-genomic era, biologists get more and more interested in studying non-coding RNA molecules

with catalytic and regulatory activity as central players in biological systems. The computational analysis of

non-coding RNA requires to take structural information into account. Whereas RNAs form three-dimensional

structures, structural analysis of RNA is usually concerned with the secondary structure of an RNA, i.e. the set

of RNA base pairs (i, j) that form contacts (H-bonds) between the bases i and j. The RNA alignment problem

is to align two RNA sequences A and B with given secondary structure for each RNA such that a score based

on sequence and structure similarity is optimized. The difficulty of this problem depends on the complexity of

the RNA structures. Therefore, a complexity hierarchy of RNA structures was introduced. Most RNA analysis

is performed for the class of nested structures P, where base-pairs do not cross, because for this class one can

find efficient dynamic programming algorithms for structure prediction and alignment under reasonable scoring

schemes [12, 5]. The more general class of crossing RNA structures P restricts the degree of base pairing to at

most one, as is commonly assumed for single RNA structure. Prediction and alignment in this class is NP-hard

in general [2]. However, one can devise a number of algorithms that efficiently predict or align RNAs with

structures from classes in between non-crossing and arbitrary crossing [9, 8, 7]. However these algorithms have

complexities that limit their application range. Other approaches for RNA alignment handle crossing structures

with parametrized complexity, were the parameter captures the complexity of the structures [6]. Finally, the

ILP approach Lara [1] computes alignments of arbitrarily complex crossing structures and appears to be more

effective than dynamic programming based approaches. The success of this AI technique was a strong motivation

for this work, where we study the alignment of RNAs with structures of unlimited complexity using constraint

programming.

Contribution We devise a constraint algorithm for the problem of aligning two RNA molecules with given

sequences and unlimited secondary structures. By modeling and propagating constraints on integers, the method

goes beyond rephrasing the ILP approach [1] in CP. We describe the constraint model, develop a new RNA

alignment propagator, and present a specific search strategy. It is implemented using the Gecode constraint

programming system. Finally, we apply our method to align both RNA molecules with given fixed structures

and RNA molecules with associated base pair probability matrices.

31



Alignment of RNA with Structures of Unlimited Complexity Dal Palù, Möhl, Will

1 Methods

1.1 Preliminaries

An RNA sequence S is a string over the set of bases {A,U,C,G} and an RNA structure P is a set of base pairs

(also called arcs) (i, j) with 1≤ i< j ≤ |S|. We define an arc-annotated sequence as pair of RNA sequence and

RNA structure and denote the i-th symbol of S by S[i].
One constructs a hierarchy of RNA structure classes based on the following properties. Two arcs (i, j) and

(i′, j′) are called nested iff i< i′< j′< j or i′< i< j< j′, they are independent iff i< j< i′< j′ or i′< j′< i< j.

A RNA structure P is called nested if all differing base pairs (i, j),(i′, j′)∈ P are either nested or independent. In

a crossing RNA structure P each base is involved in at most one base pair, i.e. ∀(i, j) 6= (i′, j′) ∈ P : i 6= i′∧ j 6=
j′ ∧ i 6= j∧ i′ 6= j′. We use the term unlimited to refer to an arbitrary RNA structure. Note that by definition

each nested structure is crossing, and each crossing structure is unlimited, such that these classes form a class

hierarchy.

An alignment A of two arc-annotated sequences (Sa,Pa) and (Sb,Pb) is a set Am∪Ag, where Am ⊆ [1..|Sa|]×
[1..|Sb|] is a set of match edges such that for all (i, j),(i′, j′) ∈ Am it holds that 1.) i > i′ implies j > j′ and 2.)

i= i′ if and only if j = j′ and Ag is the set of gap edges {(x,−) | x ∈ [1..|Sa|]∧∄y : (x,y) ∈ Am }∪{(−,y) | y ∈
[1..|Sb|]∧∄x : (x,y) ∈ Am }. We define the (i, i′)-prefix of A as A∩ ({( j, j′) | j ≤ i, j′ ≤ i′ }∪{( j,−) | j ≤ i}∪
{(−, j′) | j′ ≤ i′ }) and the (i, i′)-suffix of A as A∩ ({( j, j′) | j> i, j′ > i′ }∪{( j,−) | j> i}∪{(−, j′) | j′ > i′ }).

Fix two arc-annotated sequences (Sa,Pa) and (Sb,Pb) with unlimited structures Pa and Pb. Define the score

of alignment A of (Sa,Pa) and (Sb,Pb) as

score(Am∪Ag) := ∑
(i,i′)∈Am

σ(i, i′)+ ∑
(i, j)∈Pa,(i

′, j′)∈Pb,
(i,i′)∈Am,( j, j

′)∈Am

τ(i, j, i′, j′) + γ |Ag|,

where σ(i, j) is the similarity of bases Sa[i] and Sb[ j], τ(i, j, i′, j′) is the similarity of base pairs (i, j) ∈ Pa and

(i′, j′) ∈ Pb and γ is the gap cost. Commonly, scores for sequence-structure alignment penalize the base match

of different bases but don’t penalize the same match if it occurs as part of a base pair match. We emphasize that

our scoring function can express such scores, in the same way as scoring functions that don’t add base similarity

in case of a structural base match. For example, if bases Ai and B
′
i differ, the negative contribution by σ(i, i′) can

be compensated by τ(i, i′, j, j′) in a structural match.
The alignment problem is to determine argmax

A alignment of (Sa,Pa) and (Sb,Pb)

score(A).

Please note that we score the matches of all base pairs that are matched by the alignment. Given unlimited

structures Pa and Pb, our approach is thus able to simultaneously take into account several biologically relevant

RNA structures per sequence. In contrast, Lara [1] would select a single, best crossing RNA structure for each

sequence and score the match of only those structures. This assumes that there is only one conserved crossing

structure for each RNA. The potential advantages of our scoring for aligning RNAs with conserved unlimited

structure have still to be explored (see Discussion). For the special case of crossing structures with positive

weights there is no difference between the scoring by our approach and Lara, because in this case Lara scores the

matches of all base pairs matched by the alignment. This justifies our direct comparison of the two approaches

for this case.

1.2 Constraint Model

We model an alignment of arc-annotated sequences (Sa,Pa) and (Sb,Pb) by variables MDi and Mi for 1 ≤ i≤ |Sa|
with initial domains D(MDi) = {1, . . . , |Sb|} and D(Mi) = {0,1}. We write ~MD and ~M to denote the vectors of

respective variables MDi and Mi.

A valuation V of these variables corresponds to a class A (V ) of alignments A of (Sa,Pa) and (Sb,Pb) as
defined by

V (MDi) = j∧V(Mi) = 1 iff (i, j) ∈ A

V (MDi) = j∧V(Mi) = 0 iff (i,−) ∈ A

∧∀(i′, j′) ∈ A : i′ < i→ j′ ≤ j∧ i′ > i→ j′ > j.

32



Alignment of RNA with Structures of Unlimited Complexity Dal Palù, Möhl, Will

In this way, Mi tells whether i is matched or deleted and the value j of MDi tells that i is matched to j or

deleted after j. One can show that A (V ) has at most one element and that for each alignment A of (Sa,Pa) and
(Sb,Pb) there is a corresponding valuation.

For example, the following alignment and valuation correspond to each other:

A= {(1,1),(−,2),(−,3),(2,4),(3,−), (4,5)}

, which is often written as
A--CUG

ACAC-G
, corresponds to the valuation ~MD= (1,4,4,5) and ~M = (1,1,0,1).

Notably, alignments corresponding to a valuation that assigns MDi = j can be composed from an alignment

of prefixes Sa[1..i] and Sb[1.. j] and an alignment of suffixes Sa[i+1..|Sa|] and Sb[ j+1..|Sb|] regardless of Mi.
We introduce a constraint Alignment( ~MD, ~M) that is satisfied by any valuation with a corresponding align-

ment. Furthermore, we model the score of the alignment. Therefore, we introduce a variable Score and a

constraint AlignmentScore( ~MD, ~M,Score). This constraint relates a valuation of MD and M to the score of its
corresponding alignment.

Both constraints are propagated by the propagator of the next subsection. For finding optimal alignments

we perform a depth-first branch-and-bound search enumerating MD and M according to a specific search strategy

described at the end of the next section. Successfully applying branch-and-bound requires good upper bounds

for the alignment score, such that large parts of the search tree can be pruned. Computing such bounds efficiently

is the central job of the alignment propagator.

1.3 The Alignment Propagator

The alignment propagator computes hyper-arc consistency for the constraint Alignment( ~MD, ~M) and propa-

gates AlignmentScore( ~MD, ~M,Score).
It prunes ~MD and ~M due to the score by computing upper score bounds for single variable assignments and

furthermore computes lower and upper bounds for Score based on ~MD and ~M.

Define the class A (D) as union of A (V ) over all valuations V that satisfy D. The computation of bounds

is based on a relaxation of the alignment problem. In this relaxation the two ends of each base pair match are

decoupled. Thus in the relaxed optimization problem for D, we maximize a relaxed score

scorerelaxed(Am∪Ag) := ∑
(i,i′)∈Am

[

σ(i, i′)+
1

2
ubD(i, i

′)

]

+ γ |Ag|,

over all alignments in A (D), where

ubD(i, i
′) := max

Am∪Ag∈A (D)
∑

(i, j)∈Pa,(i
′, j′)∈Pb,

(i,i′)∈Am,( j, j
′)∈Am

τ(i, j, i′, j′) + ∑
( j,i)∈Pa,( j

′,i′)∈Pb,
(i,i′)∈Am,( j, j

′)∈Am

τ( j, i, j′, i′).

Here, ubD works as an upper bound for the score contributions by arc matches involving (i, i′) and conse-
quently scorerelaxed(A) ≥ score(A) for A ∈ A (D). Thus, solving the relaxed problem yields an upper bound of

Score.

For a moment, postpone how to efficiently compute ubD(i, i
′). Then, because the relaxed score has the form

of a sequence similarity score, one can apply the Smith-Waterman algorithm [10] to maximize the relaxed score

in O(n2) by dynamic programming, where n = max(|Sa|, |Sb|). The optimization problem is easily constrained

due to domain D, because domains directly restrict the valid cases in the dynamic programming recursion.

Tracing back through the dynamic programming matrix yields an alignment Al such that scoreAl is a lower

bound of Score. Furthermore, we compute upper bounds for each single variable valuation. This requires to

complement the above “forward algorithm” that computes the matrix entries

Prefix(i, i′) := max
(i, i′)-prefix Ap

ii′
of A∈A (D)

scorerelaxed(A
p
ii′)

by a symmetric “backward algorithm” that computes the entries

Suffix(i, i′) := max
(i, i′)-suffix As

ii′
of A∈A (D)

scorerelaxed(A
s
ii′).
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Now the variables ~MD can be pruned efficiently, because Prefix(i, i′)+Suffix(i, i′) is an upper bound for the
assignment MDi = j. Similarly, we prune ~M using the two matrices.

It remains to describe the efficient computation of ubD(i, i
′). It suffices to describe the maximization of

∑ (i, j)∈Pa,(i
′, j′)∈Pb,

(i,i′)∈Am,( j, j
′)∈Am

τ(i, j, i′, j′) over alignments in A (D). A single match ( j, j′) can occur in an alignment in

A (D) if j′ ∈ D(MD j) and 1 ∈ D(M j). However, we look for the best set of simultaneously valid matches ( j, j
′).

The structure of this subproblem is analogous to sequence alignment. Thus, it is solved efficiently by dynamic

programming. Therefore, ub(i, i′) is computed in O(kk′) time, where k and k′ are the respective number of base

pairs incident to i and i′. For many applications k and k′ can be constantly bounded such that the propagator runs

in O(n2) time and space.

Incrementality The propagator profits from reduced domain sizes of the variables ~MD, because Prefix(i, i′)
is finite only if i′ ∈ D(MDi) and the Suffix-matrix is analogously restricted. The complexity of the propagator

is therefore given more precisely as O(∑
|Sa|
i=1 |D(MDi)|). We postponed the idea of incrementally updating the

matrices according to domain changes, because we expect large domain changes due to our propagator. Large

domain changes would likely counteract the benefits of matrix updates.

Affine gap cost The method is straightforwardly extended to affine gap cost by using a Gotoh-like forward and

backward algorithm in the propagator without increasing its complexity. It appears that this modification comes

more natural in our approach than the corresponding extension in ILP, because it does not require any change of

the model.

Propagator-guided search strategy Our search strategy guides the search to disprove overestimated bounds

fast and to find valid good alignments quickly. Because information for achieving both goals is computed during

propagation and is expensive to recompute, we reuse propagation results for guiding the search. We select a

variable with large domain size that yields a high undecided contribution to the upper bound. We split the

domain of this variable to select the 20% highest relaxed scores first.

2 Results

The method, called Carna, is implemented in C++ using the constraint programming system Gecode. For han-

dling input and output as well as for special datastructures we reused code of LocARNA [11].

We run tests for two application scenarios. First, we explore Carna’s behavior on crossing input structure

using instances from all 16 Rfam families with crossing structure. Table 1 compares our results to Lara [1]. The

table omits all 8 instances where both approaches run in less than 0.1 seconds. In all but one of the omitted cases,

Carna solves the problem without backtracking. In terms of performance, with the single exception of tmRNA,

both programs are on a par.

In our second scenario, we align dot-plot matrices as computed by RNAfold[4]. We obtain unlimited input

structures by base pair filtering as e.g. done in LocARNA. As in LocARNA and PMcomp [3] base pair simi-

larities are weighted according to the base pair probabilities. This results in alignments that are guided by the

common structural potential of both RNAs and not only a single common structure. We align two tRNAs closing

the search tree after nine nodes. Two TPP riboswitches of sizes 108 and 111 are aligned in 0.24 seconds closing

the tree after 100 nodes.

3 Discussion

We showed that a constraint-based approach to RNA alignment can be competitive with the ILP based method

Lara for crossing structures. Moreover, the approach is the first such method that scores unlimited structure. In

this way, it differs from simultaneous alignment and folding approaches like Lara, which score only crossing

(or even more restricted) substructures of unlimited input structures. The full potential of scoring unlimited

structure and its biological applications, e.g. for aligning dot-plots of riboswitches and RNAs with conserved
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Family Instance Size Run-time (s) Carna Search Tree

|Sa| |Sb| |Pa| |Pb| Carna Lara Depth Fails Size

Entero OriR 126 130 35 41 0.03 0.18 38 13 50

Intron gpI 443 436 60 60 0.1 0.2 0 0 1

IRES Cripavirus 202 199 59 57 0.2 0.04 157 127 296

RNaseP arch 303 367 88 110 0.46 1.4 63 8 64

RNaseP bact b 408 401 125 125 3.0 2.3 370 677 1463

RNaseP nuc 317 346 65 66 0.07 2.9 14 4 16

Telomerase-vert 448 451 112 116 0.47 2.3 146 32 161

tmRNA 384 367 110 110 63 3.7 433 14347 28785

Table 1: Results for the eight hardest instances of the benchmark set with crossing structures. We omit details

for 8 instances where both programs run in less than 0.1 seconds.

folding dynamics have still to be explored. A constraint-based method promises flexibility for further extensions

and improvements. Solving relaxed problems in propagators for handling crossing and unlimited RNA structure

was shown to be a viable approach and appears to be generalizable to related problems.
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Abstract

X-ray crystallography is one of the main methods to establish the three-dimensional structure of

biological macromolecules. In an X-ray experiment, one can measure only the magnitudes of the

complex Fourier coefficients of the electron density distribution under study, but not their phases.

The problem of recovering the lost phases is called the phase problem. Building on earlier work by

Lunin/Urzhumtsev/Bockmayr, we extend their constraint-based approach to the phase problem by

adding further 0-1 linear programming constraints. These constraints describe geometric properties

of proteins and increase the quality of the solutions. The approach has been implemented using SCIP

and CPLEX, first computational results are presented here.

1 Introduction

Knowledge about the three-dimensional structure of biological macromolecules is an essential founda-

tion of structural biology and biotechnology. In X-ray crystallography the arrangement of atoms within a

crystal is determined from a three-dimensional representation of the electron density. From X-ray exper-

iments one gets diffraction data depending on the molecular structure, i.e., the intensities of reflections

of X-rays diffracted by the crystal. X-rays are scattered exclusively by the electrons in the atoms, so

one is searching for a relation between the measured intensities of the beams diffracted at the object in

question and the crystal structure, which can be described by the electron density distribution. The elec-

tron density represents probabilistically where electrons can be found in the molecule. With the help of

diffraction data and the usage of mathematical as well as experimental methods, an electron density map

can be derived. Direct methods use mathematical techniques to compute an electron density map from

the diffraction data without any further experiments. The main problem here is the phase problem: ex-

periments provide only the intensities of the X-rays diffracted in different directions and so the electron

density magnitudes can be calculated, whereas the information about the phase shift is lost.

Lunin, Urzhumtsev and Bockmayr [8] proposed a 0-1 linear programming approach to direct phasing.

This approach yields a set of solutions. In order to increase the quality of this solution set, we formulate

some geometric properties of proteins as additional 0-1 linear programming constraints. In [3], we

described the basic ideas of the 0-1 linear programming approach by Lunin, Urzhumtsev and Bockmayr

[8], now we derive the new geometric constraints and present first computational results.

2 The phase problem

Every crystal consists of identical molecules, resp. complexes of molecules strictly ordered in all three

dimensions. This means that we can find a parallelepiped called unit cell containing such a complex of

molecules which builds up the whole crystal if it is repeatedly stacked together in all three dimensions.

We will denote the unit cell’s volume with Vcell . Let b1,b2,b3 ∈ R3 span the unit cell. Then we can

write every vector r ∈R3 in this basis, i.e., r= x1b1+x2b2+x3b3, where x= (x1,x2,x3)
T ∈ [0,1]3 is the
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vector of coordinates of r with respect to the basis {b1,b2,b3}. We are searching for the electron density

distribution ρ(x) over the crystal. Due to the crystal structure, ρ is a periodic function and therefore can

be developed into a Fourier series [6]

ρ(x) =
1

Vcell
∑
h∈Z3

F(h)exp(−2πi(hT x)), x ∈V. (1)

The Fourier coefficients F(h),h ∈ Z3, which are called structure factors in crystallography, are given by

the formula

F(h) =

∫

V

ρ(x)exp(2πi(hT x))dx. (2)

Since these are complex numbers, the structure factors can be written in the form F(h)=F(h)exp(iϕ(h)),
where F(h) = |F(h)| is the magnitude and ϕ(h) ∈ [0,2π[ the phase.

The only experimental data we get in X-ray-crystallography are the reflection intensities. The inten-

sity I(h) of a reflection is proportional to the magnitude of the squared structure factors, with a known
constant of proportionality, i.e., C · I(h) = |F(h)|2,C ∈ R. Thus, all we can calculate from our experi-

mental data are the structure factor magnitudes. The phase information is lost and must be restored by

other means. This is called the phase problem.

3 0-1 linear programming approach

Now, the main ideas of the approach proposed in [8] are presented. Instead of calculating the electron

density distribution in the whole unit cell, we will work on a grid. Using discrete Fourier transforms, we

calculate electron densities at the grid points. Consider a grid Π = [0,M1− 1]× [0,M2− 1]× [0,M3−
1] ⊆ Z3, where M = M1M2M3 is the total number of grid points. Denote by M the diagonal matrix

diag(M1,M2,M3), with diagonal elements M1,M2,M3 ∈ N. The values of the electron density function

ρ(x), x ∈ V at the grid points are described by the grid electron density function ρg(j) = ρ(M−1j),
∀j ∈Π. We define the grid structure factor Fg(h) by the discrete Fourier transform

Fg(h) =
1

M
∑
j∈Π

ρg(j)exp(2πi(hTM−1j)), ∀h ∈Π. (3)

If we know the grid structure factors, we can restore the grid electron densities

ρg(j) = ∑
h∈Π

Fg(h)exp(−2πi(hTM−1j)), ∀j ∈Π, (4)

using the inverse discrete Fourier transform.

In the context of direct phasing, it may be sufficient to find a binary envelope of the regarded

molecules, i.e., a binary function representing areas where the electron density is above a certain cut-

off level κ [8]. Using this idea, we may replace the unknowns ρg(j) by binary variables zj ∈ {0,1}, for
each grid point j ∈Π, satisfying zj = 0, if ρ(j)≤ κ and zj = 1 otherwise.

By restricting the possible phase values ϕ(h)∈ [0,2π[, ∀h∈Π to four ones, i.e., ϕ(h)∈ {±π
4
,± 3

4
π},

∀h∈Π, the phase problem can be stated as a system of linear inequalities in 0-1 variables for representing

the electron density values at grid points and for representing the phases. By penalizing the amount of

violation, a suitable objective function can be introduced [8, 3].

In general, the resulting 0-1 linear program for solving the phase problem does not have a unique

optimal solution, but a set of different optimal solutions. In order to reduce the number of those and at

the same time increase the quality of the remaining ones, additional constraints can be added.
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Figure 1: Unit cell of Protein G

4 Additional constraints

In the electron density distribution of a protein, no peaks of very high or very low electron density occur,

if an appropriate resolution is used. This means, in the grid electron density distribution, no isolated

points of high electron density surrounded by low electron density values as well as no isolated points of

low electron density surrounded by high electron density values are expected to occur.

Definition 1 (Neighbour relation). Two grid points j1 ∈Π and j2 ∈Π are neighbours, denoted by j1nj2,

if and only if ‖ j1− j2 ‖2= 1.

Definition 2 (Isolated point). A binary grid point zj ∈ Π is called isolated if and only if zj = 0⇒ zi =
1, ∀ inj and zj = 1⇒ zi = 0, ∀ inj.

Every interior grid point has six neighbours, thus the condition −5≤ zj−∑
inj

zi ≤ 0, for all j∈Π states

the exclusion of isolated interior grid points.

5 Connectivity

At low resolution and a high enough cut-off level κ , the high-level region Ωκ
def
= {j : ρ(j)> κ} is ex-

pected to consist of a small number of connected components, which should be equal to the number of

molecules inside the unit cell [9]. At lower cut-off level these components merge into fewer regions. So

it is possible to give an upper bound for the number of molecules in advance.

We define a graph representing properties of the binary grid electron density maps. Let GΠ =
(VΠ,EΠ) be an undirected graph with M =M1 ·M2 ·M3 vertices denoted by vj, j ∈ Π. Vertices vj ∈ VΠ

and vi ∈ VΠ with j and i being neighbours are connected by edges, i.e., EΠ =
{

e= (vj,vi) | jni
}

. Let

V ∗Π ⊆VΠ be the set of vertices with a corresponding electron density above the cut-off level, i.e., the set

of vertices satisfying V ∗Π = {vj | zj = 1, j∈Π}. With E∗Π⊆ EΠ we denote the set of edges in the subgraph

G∗Π = (V ∗Π,E
∗
Π) induced by V

∗
Π.

The binary grid electron density distribution contains K ∈ N components, if and only if the corre-

sponding graphG∗Π =(V ∗Π,E
∗
Π) contains K connected components. Figure 2 shows the graph representing
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the binary grid electron density distribution. Black filled vertices represent grid electron density values

above the cut-off level, neighboured black vertices are connected by solid edges.

(0, 0, 0) (M1 − 1, 0, 0)

(0, M2 − 1, 0)
(M1 − 1, M2 − 1, 0)

(M1 − 1, M2 − 1, M3 − 1)
(0, M2 − 1, M3 − 1)

(M1 − 1, 0, M3 − 1)(0, 0, M3 − 1)

Figure 2: The graph G∗Π = (V ∗Π,E
∗
Π)

We introduce 0-1 variables ej1,j2 for j1, j2 ∈Π with j1 n j2. These variables should take the value 1, if

the corresponding edge connects two neighbouring nodes j1, j2 ∈Π with zj1 = zj2 = 1, and 0 otherwise.

The constraint −1≤ 2ej1j2− zj1− zj2 ≤ 0, for all j, j1, j2 ∈Π with j1 n j2, ensures this condition.

Now, a 0-1 linear programming approach will be presented to model that a binary grid electron

density distribution satisfies the ‘K-component-constraint’, i.e., it contains at most K ∈ N components.

For any subset /0 6= T ( Π we introduce a binary variable uT indicating whether T contains grid points

j ∈Π where the variable zj takes the value 1.

uT
def
=

{

1, if ∑
j∈T

zj ≥ 1

0, otherwise.
(5)

If this is the case for more than K disjoint subsets, there have to be edges connecting some of these

components, otherwise the ‘K-component-constraint’ would be violated.

Theorem 1 ([7] ). A binary grid electron density distribution z∗ ∈ {0,1}M1×M2×M3 contains at most K

components if it satisfies the following constraints:

−1 ≤ 2ej1j2− zj1− zj2 ≤ 0, (6)

1

|Ti|
∑
j∈Ti

zj ≤ uTi ≤ ∑
j∈Ti

zj, (7)

K+1

∑
i=1

uTi−K ≤ ∑
(j1,j2)∈δ (T1,...,TK+1)

ej1j2 (8)

uTi , zj,ej1j2 ∈ {0,1}, (9)

∀ /0 6= T1, . . . ,TK+1 ( Π,

K+1
⋃

i=1

Ti = Π, Ti∩Tj = /0, ∀i 6= j, i, j ∈ {1, . . .K+1},

∀j, j1, j2 ∈Π, with j1 n j2.
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Here δ (T1, . . . ,TK+1) denotes the set of all edges connecting two different components Ti,Tj, with i 6= j ∈
{1, . . .K+1}.

The number of constraints in (8) grows exponentially in the number of nodes. Using a separation

algorithm within a branch-and-cut framework [7], only certain violated inequalities will be added to the

formulation.

In the constraint programming literature, global constraints for restricting the number of connected

components have been studied in [5].

6 Computational results

In order to evaluate the approach, real protein data from the Protein Data Bank [1] was taken. For the

implementation, we used SCIP Version 1.2.0 [2] together with CPLEX 11.0 [4] as IP-solver. SCIP can

solve mixed-integer as well as constraint integer programming problems. The running time to calculate

a solution on a 6× 6× 6-grid (216 independent grid points) on a i686 with 4 processors, a 3GHz CPU

and 3GB RAM was about 10 minutes CPU time without additional constraints, and about 50 minutes

CPU time with all constraints added. In the latter case, about 900 search nodes and 23MB of memory

were needed, without the additional constraints 250 search nodes and 28MB of memory.

Once a set of solutions has been calculated, we evaluate the quality of those solutions. Using the

minimal molecular volume that has been defined in the solution process to specify the number of non-

zero grid values, the grid electron density distribution of the original protein is binarised. The dis-

tance D(zexact ,z
i
calc) between the resulting binary electron density zexact and the calculated ones zicalc,

i ∈ {1, . . . ,N}, where N ∈N is the number of computed solutions, is defined by

D(zexact ,z
i
calc)

def
= ∑

j∈Π

∣

∣zexact(j)− zicalc(j)
∣

∣ . (10)

The smaller the distance value, the better the quality of the considered solution. The smallest distance

reached in the test run is Dmin
def
= min

i=1,...,N
D(zexact ,z

i
calc).

As the exact solution normally is not known in advance, we use a method to get an average solution

from the set of computed solutions. One possibility to calculate such an average solution for a set of

N ∈ N solutions is the following one:

zav(j)
def
=

1

N

N

∑
i=1

zicalc(j), ∀j ∈Π, Dav
def
= D(zexact ,zav). (11)

Obviously, in general zav is not a binary function. Using the defined molecular volume value, it can be

binarised and compared to the exact solution.

Another possibility would be to choose the solution with a minimum distance from all other solutions.

For every solution, the distances to all others are summed up, the solution for which this sum is minimal

is chosen as reference solution zre f :

Dsum(i)
def
=

N

∑
j=1

∑
j∈Π

∣

∣

∣
zicalc(j)− z

j
calc(j)

∣

∣

∣
, ∀i ∈ {1, . . . ,N}, (12)

zre f
def
= zicalc, with Dsum(i) = min

j=1,...,N
Dsum( j), Dre f

def
= D(zexact ,zre f ). (13)

In the table below some test results on 6× 6× 6-grids are shown, based on the data for Protein G [1].

In order to get reasonable running times, a small grid size was chosen. For real applications it would be
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desirable to handle bigger grid sizes. A covering of 30% is forced, the original binary electron density

distribution then consists of 1 component. The 70 best solutions (with respect to the objective function

specified in [3]) were considered. Only 28 of them also consisted of 1 component, 49 of them consisted

of at most 2. The maximum number of components in one of these 70 solutions was 9.

Constraints # sol pmin pav pre f

none 70 72% 56% 54%

iso 67 72% 62% 54%

connected (2) 49 72% 66% 63%

connected (1) 28 72% 74% 65%

iso, connected (2) 49 72% 69% 68%

iso, connected (1) 28 72% 74% 70%

In the first column, the used additional constraints are specified: either only the constraint exclud-

ing isolated points (iso), or the constraint excluding isolated points and the ‘K-component-constraint’

(connected). In brackets the maximum number of components allowed is specified. The second column

shows the number of solutions from the original solution set satisfying these constraints.

In the other columns, the percentage of correct solution values is given for the different distance

measures, i.e.,

pmin =
|Π|−Dmin

|Π|
, pav =

|Π|−Dav

|Π|
, pre f =

|Π|−Dre f

|Π|
. (14)

Obviously, the values of pav as well as pre f increase by adding stricter constraints, showing the increasing

quality of the regarded solutions.

7 Conclusions and further work

Based on the 0-1 linear programming approach to model the phase problem presented at WCB 2008

[3], we derived a way to model additional 0-1 linear programming constraints representing geometric

properties of proteins. First results show that adding those to the original 0-1 program results in a higher

quality of the set of solutions. Now, this approach will be tested on more data and also on bigger grids.

Concerning future work, one could think of better ways to create a solution from the resulting solution

set or of including further constraints.
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Abstract

This paper, concerned with the protein structure prediction problem, aims at automatically select-

ing the Constraint Satisfaction algorithm best suited to the problem instance at hand. The contribution

is twofold. Firstly, the selection criterion is the quality (minimal cost) in expectation of the solution

found after a fixed amount of time, as opposed to the expected runtime. Secondly, the presented

approach, based on supervised Machine Learning algorithms, considers the original description of

the protein structure problem, as opposed to the features related to the SAT or CSP encoding of the

problem.

1 Introduction

The protein structure prediction problem has been widely studied in the field of bioinformatics, because

the 3D conformation of a given protein helps to determine its function. This problem is usually tackled

using simplified models such as HP-models in [2] and a constraint logic programming approach in [5],

however even considering these abstractions the problem is computationally very difficult and traditional

strategies cannot reach a solution within a reasonable time. Also, there has been several attempts to

predict the structure and proteins fold using well known machine learning techniques.

In this paper, we propose to use machine learning to automatically select the most promising Con-

straint Optimization algorithm for the protein structure prediction problem. In this context, proteins

are represented as a feature vector in IRd and the algorithm selection process is based on a well known

machine learning technique called decision tree which predict the most appropriate variable/value selec-

tion strategy used by a branch-and-bound algorithm in order to determine the three dimensional (3D)

conformation of a given protein.

Unlike other portfolio-based selection approaches [7] which select the algorithm which minimizes

the expected runtime, our work selects the strategy which minimizes the expected cost of the solution

found after a fixed amount of time. To the best of our knowledge, this is the first work which performs

algorithm selection in an optimization setting. Moreover, and unlike previous works which extract the

features exploited during machine learning from the SAT or CSP encoding of the problem, our work uses

features directly formulated in the application domain. Again, to the best of our knowledge it is the first

time that domain-based features are used to predict the performance of a search algorithm.

The paper is organized as follows. Background material is presented in Section 2. Section 3 presents

the general idea of algorithms portfolio. Section 4 shows the features or attributes used to describe

proteins. Section 5 reports our experimental validation and Section 6 presents some concluding remarks

and future research directions.
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2 Background

2.1 Constraint Optimization Problems

A Constraint Optimization Problem (COP) is a tuple (X ,D,C, f ) where, X represents a set of variables,

D a set of associated domains (i.e., possible values for the variables), C a finite set of constraints and

f (X) is a function to optimize. Solving a COP involves finding a value for each variable whose f (X)
is maximal (or minimal). A backtracking branch-and-bound algorithm is usually used to tackle COPs,

at each node in the search tree a variable/value pair is used in cooperation with a look-ahead algorithm

which narrows the domain of the variables.

In this paper, we consider six well known variable selection heuristics. The lexico heuristic selects

the first unassigned variable (from left to right) in the list of decision variables, mindom selects the

variable with minimal domain, wdeg [3] selects the variable which is involved in the highest number

of failed constraints, dom-wdeg selects the variable which minimizes the ratio dom
wdeg

, impacts [9] selects

the variable/value pair which maximizes the reduction of the remaining search space and domFD [1]

selects the variable that minimizes the ratio dom
FD

where FD represents the total number of weak functional

dependencies of a given variable.

2.2 The protein structure prediction problem

The protein structure prediction problem is well known in computational biology and is currently consid-

ered as one of the “grand challenges” in this field. Broadly speaking the problem consists in finding the

3D conformation (so-called tertiary structure) of a protein defined by its primary structure or a sequence

of residues S = {s1,s2, . . . ,sn} where each residue si of the sequence represents one of the 20 amino

acids. The ternary structure is often defined by the minimal energy conformation.

This problem has been previously studied in [6] using a constraint programming based model. In this

model, each amino acid is seen as a single atom unit and two consecutive amino acids in the sequence

are separated by a fixed distance also known as a lattice unit. The energy is defined by minimizing the

following formula:

E(w) = ∑
1≤i<n

∑
i+2≤ j≤n

contact(w(i),w( j))×Pot(si,s j)

where, w(i) denotes the current position of the amino acid si in the three dimensional space of a given

amino acid, contact is 1 iff two amino acids are immediate neighbors in the three dimensional cube (or

lattice) and not sequential in the primary structure, otherwise contact is set to 0, and pot defines the

energy contribution of two adjacent residues. It is also important to note that some other lattice models

have been proposed such as [2] where each amino acid in the sequence is translated from the 20 symbols

alphabet into a two symbols alphabet (i.e., hydrophobic (H) and polar (P)).

2.3 Supervised machine learning

Supervised Machine Learning exploits data labelled by the expert to automatically build hypothesis emu-

lating the expert’s decisions. Formally, a learning algorithm processes a training set E = {(x1,y1), ...,(xn,yn)}
where xi is the example description (e.g., a vector of features, Ω = IRd) and yi is the associated output.

The output can be a numerical value (i.e., regression) or a class label (i.e., classification).

The learning algorithm outputs a hypothesis f : Ω 7→ Y associating to each example description x a

desirable output y.
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3 Algorithm portfolios

Many portfolio of algorithms have been proposed to select the best technique in order to process a given

instance according to its features or descriptors. A classical portfolio is learned by taking into account

the overall computational time to solve a set of problem instances. For instance SATzilla [10] a well

known portfolio for SAT problems builds a regression model in order to learn the solving time of each

constitutive SAT solver. In this way, once an unseen instance arrives SATzilla selects the algorithm with

minimal expected run-time.

Solving a constraint optimization problem involves finding the best solution and prove that the solu-

tion is the optimal one. Unfortunately, in many cases this process cannot be completed within a reason-

able amount of time and the system must provide to the user the best solution found so far. Following this

idea, building the portfolio using algorithm’s runtime is not an alternative. A solution would be building

the portfolio taking into account the quality or cost of the solution found after some fixed amount of

computational time (e.g., time-out parameter). In the following, we are going to use this technique to

predict the cost of the solution found after 5 minutes for the protein structure prediction problem.

4 Features

The vector of feature was extracted from the extensive machine learning literature on protein fold pre-

diction [8]. In order to build the feature set, every amino acid in the primary structure is replaced by the

index 1, 2 or 3 according to the group it belongs to, i.e., Hydrophobicity, Volume, Polarity and Polariz-

ability (see Table 1). For instance, the following sequence RSTVVH is encoded as 122332 based on the

hydrophobicity attribute. This encoding is used to compute the following set of descriptors:

• Composition: 3 descriptors representing the percentage of each group in the sequence.

• Transition: 3 descriptors representing the frequency with which a residue from groupi is followed

by a residue from group j (or vice-versa).

• Distribution: 15 descriptors representing the fraction in the sequence where the first residue, 25%,

50%, 75% and 100% of the residues are contained for each encoding in Table 1.

Attribute Group 1 Group 2 Group 3

Hydrophobicity R,K,E,D,Q,N G,A,S,T,P,H,Y C,V,L,I,M,F,W

Volume G,A,S,C,T,P,D N,V,E,Q,I,L M,H,K,F,R,Y,W

Polarity L,I,F,W,C,M,V,Y P,A,T,G,S H,Q,R,K,N,E,D

Polarizability G,A,S,D,T C,P,N,V,E,Q,I,L K,M,H,F,R,Y,W

Table 1: amino acid feature’s group

In total the feature set is a composition of 105 descriptors: 84 ((15+3+3)×4) according to Table 1,

20 descriptors which represent the proportion of each amino acid in the sequence, and finally the size of

the sequence.
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5 Experiments

In this paper, we used the Gecode model proposed in [4]. All algorithms (see section 2.1) are home-made

implementations integrated into the Gecode-2.1.11 constraint solver. We experimented with 400 random

sequences of sizes ranging from 20 to 99, and performed 10-fold cross validation to evaluate the model.

The timeout of each run was set to 5 minutes, which means that the objective of the machine learning

part was to predict the strategy which would provide a solution of minimal cost after 5 minutes.

Initial experiments suggested that lexico is a powerful heuristic for the protein structure prediction

problem, therefore we explored an extension of traditional variable selection algorithms, this novel ver-

sion is presented as follows:

1. Select the first unassigned variable Xi if and only if Xi+1 is assigned.

2. If the previous step cannot be satisfied, then select the variable according to a given heuristic

criteria (e.g., dom-wdeg, domFD, etc)

The algorithms which follow the strategy mentioned above would be named as: dom-wdeg+, wdeg+,

domFD+ and impacts+. Overall, we are considering a set of 10 variable selection heuristics Hvar = {
lexico, mindom, dom-wdeg, wdeg, domFD, impacts,dom-wdeg+, wdeg+, domFD+, impacts+ } and 2

value selection algorithms Hval = { min-val, med-val } would lead to 18 heuristics candidates (8 × 2 +

2) (notice that impacts and impacts+ are variable-value selection techniques). Nevertheless the majority

of the candidates are low-quality heuristics that were almost always dominated by the top heuristics. In

this way, after eliminating these weak ones, the portfolio is build on top of the following heuristic set

H = { 〈lexico,min-val〉, 〈domFD+,med-val〉, 〈wdeg,med-val〉, 〈wdeg+,med-val〉 }. A fixed time limit

of 5 minutes was used for each experiment.

In this paper, we experimented with the following learning schemes:

• J482: weka implementation of the C4.5 algorithm. Although J48 supports continuous features

values we experimentally found that including a feature discretization step improved the accuracy

of the machine learning algorithm.

• SATzilla based approach: We used the code proposed in [7] to build the linear regression model, it

includes an important feature pre-processing phase (i.e., pairwise feature composition and forward

feature selection).

Fig 1 shows our overall experimental results. Each black point represents the performance of J48-

portfolio for a given instance and each red point represents the performance of each comparative algo-

rithm (i.e., wdeg+, domFD+ and SATzilla-based portfolio) for a given instance. For analysis purposes,

data have been sorted according to the performance of J48-portfolio. Notice that since the optimization

goal is to find the minimal energy configuration, red points above the black ones indicate that J48-

portfolio is better.

Fig 1(a) shows the performance of wdeg+ against the portfolio, in this figure J48-portfolio is better

than wdeg+ in 110 instances (resp. worse in 43 instances). Fig 1(b) shows the performance of domFD+

against J48-portfolio, here J48-portfolio is better in 231 instances and worse in 127 instances, and finally

Fig 1(c) shows the performance of J48-portfolio against the SATzilla based portfolio, in this case J48-

portfolio is better than SATzilla-portfolio in 127 instances and worse in 66 instances.

1www.gecode.org
2www.cs.waikato.ac.nz/ml/weka
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(a) wdeg+ vs J48
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(b) domFD+ vs J48
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Figure 1: Overall evaluation

6 Conclusions and future work

In this paper, we have studied the application of Machine learning techniques to build algorithms portfo-

lios in the context of the protein structure prediction problem, we have shown that using machine learning

might help to select promising algorithms improving the overall performance of the system.

Currently, we manually select the algorithms of the portfolio. Part of our future work consists in

automatically selecting algorithms using racing techniques (i.e., F-RACE) during the training phase, the

idea would be to remove the algorithms that are statistically worse than the rest.
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Abstract

To find the best lattice model representation of a given full atom protein structure is a hard com-

putational problem. Several greedy methods have been suggested where results are usually biased

and leave room for improvement.

In this paper we formulate and implement a Constraint Programming method to refine such lattice

structure models. We show that the approach is able to provide better quality solutions. The proto-

type is implemented in COLA and is based on limited discrepancy search. Finally, some promising

extensions based on local search are discussed.

1 Introduction

Extensive structural protein studies are computationally not feasible using full atom protein representa-

tions. The challenge is to reduce complexity while maintaining detail [6, 11]. Lattice protein models

are often used to achieve this but in general only the protein backbone or the amino acid center of mass

is represented [1, 16, 18, 20, 26]. A huge variety of lattices and energy functions have previously been

developed [5, 8, 28], while the lattices 2D-square, 3D-cubic and 3D face centered cubic (FCC) are most

prominent.

In order to evaluate the applicability of different lattices and to enable the transformation of real

protein structures into lattice models, a representative lattice protein structure has to be calculated. In

detail, given a full atom protein structure one has to find the best structure representation within the lattice

model that minimizes the applied distance measure. Maňuch and Gaur have shown the NP-completeness

of this problem for backbone-only models in the 3D-cubic lattice when minimizing coordinate root mean

square deviation (cRMSD) and named it the protein chain lattice fitting (PCLF) problem [19].

The PCLF problem has been widely studied for backbone-only models. Suggested approaches utilize

quite different methods, ranging from full enumeration [4], greedy chain growth strategies [17, 20, 23],

dynamic programming [10], simulated annealing [25], or the optimization of specialized force fields [13,

27]. The most important aspects in producing lattice protein models with a low root mean squared

deviation (RMSD) are the lattice co-ordination number and the neighborhood vector angles [23, 24].

Lattices with intermediate co-ordination numbers, such as the face-centered cubic (FCC) lattice, can

produce high resolution backbone models [23] and have been used in many protein structure studies (e.g.

[11, 12, 29]).

Most of the PCFL methods introduced are heuristics to derive good solutions in reasonable time.

Greedy methods as chain growth algorithms [17, 20, 23] enable low runtimes but the fitting quality

depends on the chain growth direction and parameterization. Thus, resulting lattice models are biased by

the method applied and have potential for refinement.

This paper has the goal to provide some evidence that greedy methods can be effectively improved

by subsequent refinement steps that increase the fitting quality. We present a formalization and a simple

working prototype. Moreover we briefly discuss some potential methodologies that we expect could be

effectively employed.
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2 Definitions and Preliminaries

In order to define the Constraint Programming approach we first introduce some preliminary formalisms.

Given a protein in full atom representation of length n (e.g. in Protein Data Base (PDB) format [2]),

we denote the sequence of 3D-coordinates of its Cα -atoms (its backbone trace) by P = (P1, . . . ,Pn).
A regular lattice L is defined by a set of neighboring vectors~v ∈ NL of equal length (∀~vi,~v j∈NL

: |~vi|=
|~v j|), each with a reverse (∀~v∈NL

: −~v ∈ NL, such that L = {~x |~x = ∑~vi∈NL
di ·~vi ∧ di ∈ Z

+
0 }. |NL| gives

the coordinate number of the lattice L, e.g. 6 for 3D-cubic or 12 for the FCC lattice. All neighboring

vectors ~v ∈ NL of the used lattice L are scaled to a length of 3.8Å, which is the mean distance between

consecutive Cα -atoms in real protein structures.

A backbone-only lattice protein structure M of length n is defined by a sequence of lattice nodes

M = (M1, . . . ,Mn) ∈ Ln representing the backbone (Cα ) monomers of each amino acid. A valid structure

ensures backbone connectivity (∀i<n : Mi−Mi+1 ∈ NL) as well as selfavoidance (∀i 6= j : Mi 6= M j), i.e. it

represents a selfavoiding walk (SAW) in the underlying lattice.

The PCFL problem is to find a lattice protein model M of a given protein’s backbone P, such that a

distance measure between M and P (dist(M,P)) is minimized [19].

In this contribution, we tackle the PCFL refinement problem. Here, a protein backbone P as well

as a first lattice model M is given, e.g. derived by a greedy chain growth procedure [17, 20, 23]. The

problem is to find a lattice model M′, such that dist(M′,P) < dist(M,P), via a relaxation/refinement of

the original model M.

In the following, we utilize distance RMSD (dRMSD, Eq. 1) as the distance measure dist(M,P).
dRMSD is independent of the relative orientation of M and P since it captures the model’s deviation

from the pairwise distances of Cα -atoms in the original protein. Minimizing this measure optimizes the

lattice model obtained.

dRMSD(M,P) =

√

∑i< j (|M j−Mi|− |Pj−Pi|)2

n(n−1)/2
(1)

3 Refinement of Lattice Models: a Constraint Model in COLA

In this section we formalize a Constraint Optimization Problem (COP) to solve the PCFL refinement

problem (see Sec. 2), i.e. to refine a lattice model M of a protein P. The input is the original protein P

and its lattice model M to be refined. The output is a lattice model M′ derived from M via some relaxation

that optimizes our distance measure dRMSD(M′,P) (Eq. 1).

We first formalize the problem and show how to implement it in COLA, a COnstraint solver for

LAttices [21]. This is followed by an altered formulation that utilizes limited discrepancy search [9].
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3.1 The Constraint Optimization Problem

The COP can be formalized as follows:

X1 . . .Xn variables representing M′ = (M′
1, . . . ,M

′
n)

D(Xi) variable domains = {v | v ∈ L∧|v−Mi| ≤ fscale ·dmax},
i.e. an Mi surrounding sphere with radius fscale ·dmax

SAW (X1 . . .Xn) self-avoiding walk constraint, e.g. split into a chain of binary

contiguous and a global alldifferent constraint

O objective function variable, implements dRMSD

= ∑i< j(|X j−Xi|− |Pj−Pi|)
2 to be minimized

Note that dmax refers to the number of lattice units used and thus it is scaled to the correct distance of

fscale = 3.8Å. Thus, the domains for dmax = 0 only contain the original lattice point Mi (domain size 1),

while dmax = 1 results in Mi as well as all neighbored lattice points (domain size 1+ 12 = 13 in FCC).

The domain size guided by dmax defines the allowed relaxation of the original lattice model M to be

refined. For more details about global constraints for protein structures on lattices, the reader can refer

to [1, 22].

The COLA implementation takes advantage of the availability of 3D lattice point domains and dis-

tance constraints. The implementation changes the original framework only in the input data handling

and objective function definition. A working copy of COLA and the COP implemented for this paper

are available at http://www2.unipr.it/∼dalpalu/COLA/

3.2 Limited Discrepancy Search

A simple enumeration with dmax = 1 and a protein of length 50, already shows that the search space

of the COP from the previous section is not manageable. In this example, each point can be placed in

13 different positions in the FCC lattice, and even if the contiguous constraint among the amino acids is

enforced, the number of different paths is still beyond the current computational limits.

We tried a simple branch and bound search an X1, . . . ,Xn, where the dRMSD bound is estimated by

considering the possible placement of non labeled variables and the best dRMSD contribution provided

by each amino acid. In detail, each amino acid s not yet labeled is compared to each other amino acid (s′).

Each pair provides a range of different contributions to dRMSD measure, depending on the placement

of s and the placement of the other amino acids (when not yet labeled). A closed formula computation

(rather than a full enumeration of all combinations), based on bounding box of domain positions, is

activated, in order to estimate the minimal contribution. Clearly, this estimation is not particularly suited,

since we relax the estimation on R
3, where the null (best) contribution can be easily found as soon as

the bounds on |Xs−Xs′ | include the value |Ps−Ps′ |. Unfortunately, the discrete version requires a more

expensive evaluation that boils down to full pair checks. Therefore, the current bound is very loose and

the pruning effects are modest.

A general impression is that the dRMSD measure presents a pathological distribution of local min-

ima, depending on the placement of amino acids on the lattice. In general, due to the discrete nature of

the lattice, the modification of a single amino acid’s position can drastically vary its contributions to the

measure.
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Protein ID 8RXN 1CKA 2FCW

length 52 57 106

Table 1: Used proteins from the Protein Data Base (PDB) [2].

These considerations suggested us to focus on the identification of solutions that improve the dRMSD

w.r.t. M rather than searching for the optimal one. In terms of approximated search we tried to capture

the main characteristics of the COP and design efficient and effective heuristics.

A simple idea we tested is the limited discrepancy search [9]. This search compares the amino acid

placements in the lattice models M and M′. Every time a corresponding amino acid is placed differently

in the two conformations, we say that there is a discrepancy. We set a global constraint that limits the

number of deviations to at most K. This allows to generate conformations that are rather similar to M,

especially if dmax is greater than 1. The rational behind this heuristics is that we expect that potential

conformations M′ improve the dRMSD only when contained in a close neighborhood of the M structure.

The count of the number of discrepancies K is implemented directly in COLA at each labeling step.

3.3 Results

We summarize here the preliminary results coming from the COLA implementation of a K discrepancy

search in 3D FCC lattice.

The initial lattice models to be refined were generated using the LatFit tool from the LatPack pack-

age [16, 17]. LatFit implements an efficient greedy dRMSD optimizing chain growth method and was

parameterized to consider the best 100 structures from each elongation for further growth1.

We test three proteins (Table 1) and for each of them we input the conformation M obtained from

the greedy algorithm (LatFit). Table 2 reports the best dRMSD of our new model M′ found depending

on dmax and the number K of amino acids placed differently from the input conformation. Furthermore,

time consumption for each parameterization is given.

Note that if either K = 0 or dmax = 0 only the input structure resulting from the greedy LatFit run can

be enumerated.

These results, yet preliminary, offer an interesting insight about the distribution of suboptimal so-

lutions. It is interesting to note, e.g., that better solutions are found by allowing a rather large local

neighborhood for a few amino acids (dmax parameter). On the other side, it seems that few modifications

(K) are sufficient to alter the input sequence and obtain a better conformation.

In Figure 1 we exemplify the gain of model precision for the protein 8RNX. Only the relaxation of

K = 4 monomers enables the structural change that leads to a dRMSD drop from 1.2469 down to 1.0884,

an improvement of about 13%. A movement of less monomers would not enable such a drastic change.

This depicts the potential of a local search scheme that iteratively applies a series of such structural

changes.

Investigating the time consumption (Table 2) one can see that the runtime increases drastically with

K which governs the search tree size. The domain sizes implied by dmax do not show such an immense

influence.

The behavior encountered is an indicator that a search based on exploring only the neighborhood

should provide efficient and good suboptimal solutions. In the next section we briefly discuss some

promising approaches that we plan to investigate.

1For details on the LatFit method see [17] and the freely available web interface at http://cpsp.informatik.
uni-freiburg.de
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Figure 1: The initial lattice model M (red) of the protein chain P (blue, balls) and the final/refined lattice

model M′ (green) resulting from dmax = 2 and K = 4 for protein 8RNX. Note, only the altered loop

regions (residue 2-14) are shown, but the whole structure models M and M′ were superpositioned to P

independently.

dRMSD

K

8RXN 1 2 3 4

dmax

0 1.2469 1.2469 1.2469 1.2469

1 1.2319 1.2172 1.1639 1.1189

2 1.2319 1.1674 1.1596 1.0884

3 1.2319 1.1674 1.1596 1.0884

K

1CKA 1 2 3 4

dmax

0 1.2370 1.2370 1.2370 1.2370

1 1.2226 1.2226 1.2226 1.2226

2 1.2026 1.1887 1.1887 1.1887

3 1.2026 1.1887 1.1887 1.1887

K

2FCW 1 2 3 4

dmax

0 1.1353 1.1353 1.1353 1.1353

1 1.1353 1.1324 1.1317 1.1309

2 1.1321 1.1300 1.1254 1.1200

3 1.1321 1.1300 1.1254 1.1200

time in seconds

K

8RXN 1 2 3 4

dmax

0 0.048 0.081 0.040 0.039

1 0.112 0.790 2.365 20.70

2 0.068 0.983 6.500 106.6

3 0.106 0.499 7.399 124.0

K

1CKA 1 2 3 4

dmax

0 0.031 0.030 0.027 0.037

1 0.402 0.615 3.442 39.27

2 0.225 0.456 7.595 120.6

3 0.421 0.616 8.573 140.2

K

2FCW 1 2 3 4

dmax

0 0.043 0.050 0.058 0.078

1 0.118 1.997 49.99 1128

2 0.294 7.192 341.8 14235

3 0.332 8.129 394.5 16140

Table 2: dmax and K influence on discrepancy search measured in dRMSD and time.

51



Lattice model refinement of protein structures Mann & Dal Palù

3.4 Future work

In our opinion, a framework that integrates CP and Local Search is particularly suited to generate fast

suboptimal solutions, potentially very close to the optimal one. We identify some possible directions that

we believe are excellent candidates to model and solve approximately the PCLF problem:

• local neighboring search [3, 7]: this technique allows to integrate Gecode and Local Search

frameworks. The framework handles constraint specifications and local moves within C++ pro-

gramming language;

• k-local moves [25]: the idea here is to apply structural changes on k consecutive amino acids and

repeat the process in a Monte-Carlo and/or simulated annealing style.

• side chain model [15]: our model can be extended to include side chains and we could exploit a

similar set of local moves.

• the framework presented in [30]: COLA is here extended and combined directly to a Local

Search approach based on pull moves [14].

4 Conclusion

In this paper we presented a Constraint Programming based model for the refinement of lattice fitting of

protein conformations. A simple branching was shown to be ineffective and a limited discrepancy search

was modeled and shown to be beneficial to the identification of suboptimal solutions. A prototypical

implementation in the framework COLA and some preliminary results have shown the feasibility of the

method. We believe that an extension of the framework to Local Search is particularly suited for the

PCLF problem at hand.
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[22] A. Dal Palù, A. Dovier, and E. Pontelli. Computing approximate solutions of the protein structure determi-

nation problem using global constraints on discrete crystal lattices. J of Data Mining and Bioinformatics,

4(1):1 – 20, 2010.

[23] B. H. Park and M. Levitt. The complexity and accuracy of discrete state models of protein structure. J Mol

Biol, 249:493–507, 1995.

[24] C. L. Pierri, A. Grassi, and A. Turi. Lattices for ab initio protein structure prediction. Proteins, 73(2):351–

361, 2008.

[25] Y. Ponty, R. Istrate, E. Porcelli, and P. Clote. LocalMove: computing on-lattice fits for biopolymers. Nucleic

Acids Res, 36(2):W216–W222, 2008.

[26] A. Renner and E. Bornberg-Bauer. Exploring the fitness landscapes of lattice proteins. In Pac Symp Biocom-

put., pages 361–372, 1997.

[27] B. A. Reva, D. S. Rykunov, A. V. Finkelstein, and J. Skolnick. Optimization of protein structure on lattices

using a self-consistent field approach. Journal of Computational Biology, 5(3):531–538, 1998.

[28] B. A. Reva, M. F. Sanner, A. J. Olson, and A. V. Finkelstein. Lattice modeling: Accuracy of energy calcula-

tions. J Comp Chem, 17(8):1025 – 1032, 1996.

[29] A. D. Ullah, L. Kapsokalivas, M. Mann, and K. Steinhöfel. Protein folding simulation by two-stage opti-
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Abstract

In systems biology, identifying vital functions like glycolysis from a given metabolic pathway

is important to understand living organisms. In this paper, we particularly focus on the problem of

finding minimal sub-pathways producing target metabolites from source metabolites. We represent

laws of biochemical reactions in propositional formulas and use a minimal model generator based

on a state-of-the-art SAT solver. An advantage of our method is that it can treat reversible reactions

represented in cycles. Moreover recent advances of SAT technologies enables us to obtain solutions

for large pathways. We have applied our method to a whole Escherichia coli metabolic pathway. As

a result, we found 5 sets of reactions including the conventional glycolysis sub-pathway described in

a biological database EcoCyc.

1 Introduction

Living organisms are kept alive by a huge number of chemical reactions. In systems biology, interactions

of such chemical reactions are represented in a network called pathway. Analyses of pathways have been

active research field in the last decade and several methods have been proposed [7, 17]. A longstanding

approach is to represent pathways as systems of differential equations. This method allows detailed anal-

yses e.g. concentrations of each metabolite with time variation. However, it is not applicable to a large

network due to its difficult parameter tuning. This is a problem because scalability is an important feature

for macroscopical analyses of complex networks like cells, organisms and life, which is a fundamental

goal in systems biology. Therefore other methods aiming for scalable and abstracted analyses have been

proposed [2, 3, 12, 11, 15]. Although these methods are different from each others in these problem

formalization and solving methods, their purpose is the same, that is, to identify biologically meaningful

sets of reactions from a given pathway.

One of these methods proposed by Schuster et al. is called elementary mode analyses. It focuses

on a flux distribution, which is computed by matrix calculus, corresponding to a set of reactions in

metabolic pathways [15]. This method can treat multi-molecular reactions while taking into account

stoichiometry, and its computational scalability is enough to analyze large pathways. However it tends to

generate a large number of solutions without ordering e.g. over 20000 solutions for a pathway including

100 reactions. Even though found solutions are potentially interesting, analyzing all of them through

biological experiments would be infeasible task. We thus need a method which generates lower number

of solutions keeping its quality. Another approach relying on graphs is proposed by Croes et al. [3]. They

formalized their problem using a weighted graph and ran a depth-first search algorithm to find the lightest

paths from a source compound to a target compound. Planes and Beasley proposed to solve the same

problem using a constraint-based method [11]. An advantage of these two methods is that an evaluation

of the quality of the solution is provided. We can then choose an objective value to reduce the number

of solutions that should be provided to biologists. However, this approach can only generate paths

while sub-pathways would be a more natural representation. The approach thus sometimes generates not

valid paths from a biological viewpoint because it can easily take non-meaningful shortcuts via common

metabolites, such as water, hydrogen and adenosine triphosphate (ATP).
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In this paper, we propose a new analysis method for metabolic pathways which finds sub-pathways

producing a set of target metabolites from a set of source metabolites. In particular, we focus on finding

minimal sub-pathways which has the property of not containing any other feasible sub-pathways, that

is, intuitively, all elements in each minimal sub-pathway are qualitatively essential to produce target

metabolites. We represent laws of biochemical multi-molecular reactions in propositional formulas and

translate the problem into conjunctive normal form (CNF) formulas. We then use a model generator

based on state-of-the-art SAT solver to solve the problem efficiently. Recent progresses in SAT domain

now make it possible to apply our method to huge pathways. In realistic metabolic pathways, there

are a lot of reversible reactions. Previous approaches thus needed pre-processing or post-processing,

which is possibly costly, to deal with reversible reactions in a pathway [11, 16]. We also show how our

method treats such reversible reactions by a minimal model generation. For evaluation, we compared

our method with previously proposed approaches [1, 11] for a simplified pathways of E. coli, which

consists of 880 reactions. As a result, our method identified 10 experimentally elucidated sub-pathways,

while the previous methods identified at most 8 sub-pathways. We also tested our method with a whole

Escherichia coli (E. coli) pathway consisting of 1777 reactions.

In the reminder of this paper, we explain propositional formulas and its minimal models in Section

2. In Section 3, we explain the sub-pathway finding problem and the difference from the previously

proposed path finding problem. We show the translation from the sub-pathway finding problem into

propositional formulas in Section 4. In Section 5, we show the experimental result. In Section 6 and 7

respectively discuss related work and future work.

2 Propositional Formulas and Minimal Model Generation

This section reviews propositional formulas and its minimal models. Let V = {v1,v2, . . . ,vi} be a set
of propositional variables. A literal is a propositional variable vi or its negation ¬vi. A clause is a

disjunction of literals. A conjunctive normal form (CNF) formula is a conjunction of clauses and is also

identified with a set of clauses. The truth value of a propositional variable is either true (T ) or f alse (F).

A (partial) truth assignment for V is a function f : V → {T,F}. A literal vi is said to be satisfied by a

truth assignment f if its variable is mapped to T ; a literal ¬vi is satisfied by a truth assignment f if its
variable is mapped to F . A clause is satisfied if at least one of its literals is satisfied. A model for a CNF

formula Ψ is a truth assignment f where all clauses are satisfied. Models can also be represented in the

set of propositional variables to which it assigns true. For instance, the model assigning v1 to true, v2
to f alse, v3 to true is presented by the set {v1,v3}. In this manner, we can compare two models by set
inclusion. We here give the following two definitions [8]:

Definition 1. Let Vp, V1 and V2 be sets of propositional variables. Then, V1 is said to be smaller than V2
with respect to Vp if V1∩Vp ⊂V2∩Vp holds.

Definition 2. Let Ψ be a propositional formula, Vp a set of propositional variables, and I a model of Ψ.

Then I is a minimal model of Ψ with respect. to Vp when there is no model smaller than I with respect to

Vp.

Example. Suppose that Ψ is a propositional formula (v1 ∨ v2)∧ (¬v1 ∨¬v2)∧ (¬v2 ∨ v3). Then all

models of Ψ are {v1}, {v2,v3}, {v1,v3} and the minimal models are {v1} and {v2,v3}. Please note that
minimality does not depends on the number of the elements, however depends on the inclusion relation

between models, in other words, we focus on subset minimal models rather than numerical minimal

models. Niemelä reported a method to find the minimal models for propositional logic with ECLiPSe
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Minimal Model Generation Procedure (Ψ, Vp)

begin

Σ := /0 ;

loop

(res, I) = Solve(Ψ) ;

if res = UNSAT then return Σ ;

else

Vx := I∩Vp ;

Vy := I∩Vp ;

Ψc := Ψ∧
(
∨

xi∈Vx¬xi
)

∧
(

∧

y j∈Vy¬y j

)

;

(res, Vc) = Solve(Ψc) ;

if res = UNSAT then Σ := Σ∪{I} ;
Ψ := Ψ∧

(
∨

xi∈Vx¬xi
)

;

end

Figure 1: Procedure of Generating Minimal Models

Prolog [10]. Koshimura et al. also reported a minimal model generator based on SAT solvers [8] which

we use in this paper. They provided the following theorem [10, 8]:

Theorem 1. Let Ψ be a CNF formula, I be a model of Ψ, andVp be a set of propositional variables. I is a

minimal model of ψ with respect toVp iff a formula Ψc = Ψ∧¬(x1∧x2∧ . . .∧xi)∧¬y1∧¬y2∧ . . .∧¬y j
is unsatisfiable, where I∩Vp = {x1,x2, . . . ,xi}, I∩Vp = {y1,y2, . . . ,y j}.

We review a procedure of a minimal model generation [8] in Figure 1. The inputs of the procedure

are a propositional formula Ψ and a set of propositional variables Vp. The output is a set Σ of minimal

models. The function Solve corresponds to SAT solvers which return SAT and its model when a given
formula is satisfiable. The function returns UNSAT otherwise.

3 Path Finding and Sub-pathway Finding

This section provides the detail of an existing problem path finding problem and formalises sub-pathway

finding problem on which we are focusing. Let M = {m1,m2, . . . ,me} be a set of metabolites, R =
{r1,r2, . . . ,r f } a set of chemical reactions, and A ⊆ (R×M)∪ (M× R) a set of arcs. A pathway is

represented in a directed bipartite graph G = (M,R,A) where M and R are two sets of nodes, A is a set

of arcs. A metabolite m ∈M is called a reactant of a reaction r ∈ R if there is an arc (m,r) ∈ A. On the

other hand, a metabolite m ∈M is called a product of a reaction r ∈ R if there is an arc (r,m) ∈ A. Let ms

be a source metabolite and mt a target metabolite. Let Ap = {a1,a2, . . . ,an} be a ordered set of arcs of a
given pathway. In this paper, we call a simple and elementary path between ms and mt as a path which is

represented in a ordered set Ap.

Example. Figure 2 shows a simple example of a directed bipartite graph representation of a pathway.

Circle nodes and square nodes represent metabolites and reactions, respectively. For instance, GLC-6-P
and NADP are reactants of the reaction R1 and PROTON and D-6-P-GLUCONO-DELTA-LACTONE are
products of the reaction R1. There are two paths between RIBULOSE-5P and GAP; one uses R5 and

R6, and the other uses R4 and R6.
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Path Finding Problem. The path finding problem which has been studied in the literature [3, 11, 12]

is given as follows.

Definition 3. Path Finding Problem

Input Given by 6-tuple (M,R,A,w,ms,mt), where M = {m1,m2, ...,me} is a set of metabolites, R =
{r1,r2, ...,rr} is a set of reactions, A⊆ (R×M)∪ (M×R) is a set of arcs, w : A→ Z+ is a mapping

representing weights, ms ∈M is a source compound and mt ∈M is a target compound.

Output k-lightest paths such that ∑ai∈Ap
w(ai)≤ k

An important factor of the problem is a mapping w. The problem exactly corresponds to find k-

shortest paths in the case of w : A→ {1}. However, solutions of the problem frequently include un-

expected shortcuts [3]. To overcome this problem, Croes et al. proposed a mapping which is based

on degree of the nodes of metabolites, that is, common compounds, such as water and hydrogen, are

avoided because those have high degree. They had a comparison between three graphs. One is called

raw graph which is original graph without any weights. Another one is filtered graph which omits the

selected metabolites which have high degree from the raw graph. The other one is the weighted graph.

Their method with the weighted graph successfully obtained better accuracy than former two graphs.

An advantage of path finding approach is to be able to utilize existing graph-search algorithms. These

algorithms are scalable enough to a whole pathway networks. However, there is still remaining problems

of shortcuts. Figueiredo et al. summarised problems for path finding approach [3, 12] by a specific ex-

ample [4]. For instance, graph-based approaches outputs two paths between GLC-6-P and GAP in the

pathway. One is throughout R1, R2, R3, R5 and R6. Another one uses R4 and instead of R5. Although
these paths give us one aspect of pathways, it is not easy to obtain reactions which are mainly occurred

while target metabolites are produced. Considering a reaction R6, it needs XYLULOSE-5-PHOSPHATE
and RIBOSE-5P as reactants. However, each obtained path cannot reflect this reaction law.

Sub-pathway Finding Problem. To overcome these problems, we propose and formalise a new prob-

lem called the sub-pathway finding problem. We here give additional terminology to define the problem.

Let s : R→ 2M be a mapping from a set of reactions to a set of metabolites such that s(r) = {m ∈
M|(m,r) ∈ A} represents the set of metabolites which are needed for activating a reaction r. Let p :

R→ 2M be a mapping from a set of reactions to a set of metabolites such that p(r) = {m ∈M|(r,m) ∈ A}
represents the set of metabolites which are produced by a reaction r. Let s−1 and p−1 be inverse mappings

of s and p, respectively. Let t be an integer variable representing a time and e be an integer value for a

variable t. Let M′ ⊆ M be a subset of metabolites. A metabolite m ∈ M is producible at a time t = 0

from M′ if m ∈M′ holds. A reaction r ∈ R is activatable at a time t = e(0 < e) from M′ if ∀m ∈ s(r)
is producible at a time t = e− 1 from M′. A metabolite m ∈ M is producible at a time t = e(0 < e)
from M′ if m ∈ p(r) holds for at least one reaction r which is activatable at a time t = e from M′. If r is

activatable at a time t = e then r is activatable at a time t = e+1. If m is producible at a time t = e then m

is producible at a time t = e+1. Let Mi ⊆M be a subset of metabolites representing initial metabolites,

Ms ⊆ M a subset of metabolites representing source metabolites and Mt ⊂ M a subset of metabolites

representing target metabolites. Please note that we distinguish Ms from Mi. Every metabolite m ∈Mi

represents universal metabolites which are always available in pathways, such that WATER, ATP and

PROTON. On the other hand, Ms andMt represent particular source metabolites and target metabolites in

which we are interested, respectively.

Definition 4. Let π be a 6-tuple (M,R,A,Mi,Ms,Mt) and G= {M,R,A} a graph. A sub-graph G′ of G is

a sub-pathway of π if G′ = (M′,R′,A′) and it holds the following conditions (i), (ii) and (iii): (i) Ms ⊂M′

andMt ⊂M′, (ii) For every m ∈M′, m is producible fromMi∪Ms at a time t ≥ e for some e∈ Z+, (iii) For
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Figure 2: A Sub-pathway of the E. coli Pathway

every r ∈ R′, r is activatable fromMi∪Ms at a time t ≥ e for some e ∈ Z+. In addition, a sub-pathway G′

is called minimal if it holds that (vi) there is no sub-pathway G′′ such that G′′ ⊂ G′.

Definition 5. Sub-pathway Finding Problem

Input Given by a 6-tuple π = (M,R,A,Mi,Ms,Mt), where M = {m1,m2, ...,mx} is a set of metabolites,
R = {r1,r2, ...,ry}, A ⊆ (R×M)∪ (M×R) is a set of arcs, Mi ⊂M is a set of initial compounds,

Ms ⊂M is a set of source compounds, Mt ⊂M is a set of target compounds.

Output All minimal sub-pathways of π .

In practice, we compute more restricted solutions of the problem since the number of all minimal

sub-pathways tends to be large. We describe how to restrict solutions in the next session. The solu-

tion of the example shown in Figure 2 is different between the path finding problem and sub-pathway

finding problem. While the solution of the path finding problem is two paths, the solution of the sub-

pathway finding problem is the one sub-pathway: R1, R2, R3, R4, R5 and R6. Please note that the

reaction R6, XYLULOSE-5-PHOSPHATE and RIBOSE-5P are needed as reactants to produce GAP
and D-SEDOHEPTULOSE. The solution correctly reflect the law of the reaction R6. However path find-
ing approach returns the activation of R6 without producing both reactants. Obviously, the output of the

sub-pathway finding problem reflects a biological law of reactions and is natural representation. More

details of the problem the path finding is discussed in the literature [4].

4 Translation into Propositional Formulas

4.1 Translation

This section provides a translation for a 6-tuple π . Let e be integer for a time t. Let rtn,e be a propositional
variable which is true if a reaction rn ∈R is activatable at a time t = e and later. Letmti,e be a propositional

variable which is true if a metabolite mi ∈M is producible at a time t = e and later. For each reaction

and metabolite, we have the following supplemental formulas ψs:

rtn,e−1→ rtn,e, mti,e−1→ mti,e.
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For each reaction rn, we have the following formula representing that if a reaction rn is activatable at a

time t = e then its reactants must be producible at a time t = e−1.

rtn,e→
∧

mi∈s(rn)

mti,e−1 (1)

For each reaction rn, we have the following formula representing that if a reaction rn is activatable at a

time t = e then its products must be producible at a time t = e.

rtn,e→
∧

m j∈p(rn)

mt j,e (2)

In a naive way, above two formulas are generated by every time t for every reaction. However it

results in the expansion of translated clauses. We thus need to reduce the size of the translated formulas.

Let n() be a mapping from a set to the number of elements of the set. A time t = e is called the earliest

activatable time of a reaction r ∈ R if r cannot be activatable at a time 0 < t < e and can be activatable

e ≤ t. Let M′ =Ms∪Mi be a set of metabolites. Let d and n be integers. Let R′ be the set of reactions

which are activatable from M′. Let T be a set of integers {1, . . . ,n(R′)}. Let fe : R
′→ T be a mapping

from a set of reactions to a set of integers representing each reaction ri ∈ R and its earliest activatable

time e ∈ T . The mapping fe is also represented in a set of pairs (ri,e) of ri ∈ R and e ∈ T . We here show

a procedure to form the mapping fe in Figure 3. Let dmax be a constant represent the output integer value

d of the procedure. Please note that this procedure can be done in polynomial time. This procedure can

be seen a filtering method for a given π , that is, it omits the reactions which are not activatable from

M′. Moreover, the earliest activatable time is useful to reduce the size of translated formulas. If e is the

earliest activatable time for a reaction r obviously do not need to consider a time t < e for the reaction.

However the size of translated formulas still tends to be large.

Let fu : R
′→ T be a bijection from a set of reactions to a set of integers representing each reaction and

its unique time. In Figure 4, we show a procedure to construct the bijection fu. To complete the proce-

dure, we need to consider how to sort a set {ri | (ri,d)∈ fe}. We use a mapping fs(ri) = Σm j∈s(ri)deg(m j)
where deg(m j) represents the outdegree of the node m j. We sort a set {ri | (ri,d) ∈ fe} according

to increasing order of fs(ri). This sorting procedure place reactions, which consume low outdegree

metabolites, earlier. We assumed that such a reaction is easier to be activatable because it may have a

less number of competitive reactions which possibly dominates the compound.

For each reaction rn and its unique time fu(rn), we have the third formula representing that if a

reaction rn is not activatable then metabolites m j ∈ p(rn) keeps its state from a time fu(rn)−1.

¬rtn, fu(rn)→
∧

m j∈p(rn)

(

¬mt j, fu(rn)−1→¬mt j, fu(rn)
)

(3)

Please note that this formula does not mean that if rn is not activatable then metabolites m j ∈ p(rn) is
not producible for any time. Some of those metabolites can be made to producible at a different time

by some reactions since each reaction has its unique time. We have the following formula Drn , which is

given as conjunction of the formulas (1), (2) and (3):

Drn =



rtn, fu(rn)→
∧

mi∈s(rn)

mti, fu(rn)−1∧
∧

m j∈p(rn)

mt j, fu(rn)



∧



¬rtn, fu(rn)→
∧

m j∈p(rn)

(

¬mt j, fu(rn)−1→¬mt j, fu(rn)
)



 (4)
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Activatable Time (M′)

begin

d := 0;

while (M′ 6= /0)
mark ∀mi ∈M′ as visited;

M′′ = /0;

d := d+1;

loop for mi ∈M′

loop for r j ∈ s−1(mi)
if r j /∈ {rk | (rk,n) ∈ fe,n≤ d} and ∀mk ∈ s(r j) is visited then

fe := fe∪{(r j,d)};
loop for mk ∈ p(r j)
if mk is not visited then

M′′ :=M′′∪{mk};
M′ :=M′′;

return ( fe, d);

end

Figure 3: Procedure for fe

Unique Time ( fe)

begin

u := 0;

loop for d ∈ {1, . . . ,dmax}
Rsorted := sort {ri | (ri,d) ∈ fe};
loop for r j ∈ Rsorted

u := u+1;

fu := fu∪{(r j,u)};
return fu;

end

Figure 4: Procedure for fu

According to our translation, the number of the elements of fu(rn) is the number of reactions n(R′).
Thus, only n(R′) formulas of Drn are generated. Although the size of translated formulas is enough

tractable, we sometimes cannot find objective solutions since the translation is incomplete. To generate

more solutions, we here extend Drn to D
k
rn
. Let o be an integer such that o= n(R′)∗ (k−1)+ fu(rn). We

then have the following formula Dk
r(n)

:

Dk
r(n)

=



rtn,o→
∧

mi∈s(rn)

mti,o−1∧
∧

m j∈p(rn)

mt j,o



∧



¬rtn,o→
∧

m j∈p(rn)

(¬mt j,o−1→¬mt j,o)



 (5)
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Figure 5: A Pathway Including Reversible Reactions

Obviously, Drn corresponds to Dk
rn
when k = 1. Let z be an integer representing step. We have the

following formula:

z
∧

k=1

Dk
rn
. (6)

In practice, z = 3 is enough to obtain the objective sub-pathways for the benchmark we used this time.

We also need to have an initial condition and a target condition:

C(0) =
∧

mi∈Ms∪Mi

mti,0∧
∧

m j∈M\(Ms∪Mi)

¬mt j,0 (7)

C(n(R′)∗ z) =
∧

mi∈Mt

mti,n(R′)∗z (8)

Finally, we have the translated formula as follows:

Ψ =
z
∧

k=1

Dk
rn
∧C(0)∧C(n(R′)∗ z)∧ψs (9)

We use a set of propositional variables Vp = {mti,n(R′)∗z|mi ∈M}∪{rt j,n(R′)∗z|r j ∈ R′} to be minimized.
Although we can restrict a number of solutions using a step z, sometimes there is a case that we want

to reduce more number of solutions. In this case, we can choose more essential solutions by setting

Vp = {mti,n(R′)∗z|mi ∈M}. We then compute minimal models of the formula Ψ with respect to Vp by the

minimal model generation procedure shown in Figure 1.

4.2 Treate Reversible Reactions

Treatment of reversible reactions frequently becomes a problem. Ray et al. reported the difficulty of

that and answer set semantics is suitable to resolve the problem [13]. Some other approaches took

pre-processing or post-processing which breaks reversible reactions in a pathway [1, 11, 16]. Unlike

those approaches, our method resolve the problem by considering the notion of activatable and finding

minimal models of translated formulas. We show an toy example including reversible reactions in Figure

5. Metabolites m1 and m4 are a source metabolite and a target metabolite, respectively. We represent

a model in a set of reactions to simplify explanations. A set of reactions {r6,r7,r8} cannot be a model
of translated formula due to the formula (3). The formula (3) traces the origin of the producibility of
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the metabolite as well as state maintenance, that is, if a metabolite is producible at a time t = e then the

formula (3) guarantees either the metabolite is producible at a time t < e or the reaction is activatable at

a time t = e. Therefore reversible reactions without feeding fromMs∪Mi are not activatable. Practically,

such reactions are omitted in the first place by the procedure shown in Figure 3. A set of reactions

{r1,r2,r3,r4,r5} can be a model including reversible reactions. However it cannot be a minimal model
because there is a model {r1,r3,r5}. Finally, we found only one minimal model {r1,r3,r5} for the

example.

4.3 Other Biological Applications

Simulating Effects of Deletion of Enzymes. The method allow us to simulate the difference between

pathways of wild-type organisms and pathways of mutants or gene knockout organisms. For instance,

we can obtain the effect of a gene knock out by removing the reaction related to the gene we want to

omit. This is achieved by adding the following formula.

¬rti,n(R′)∗z (10)

Simulating Effects of Inhibition. In metabolic pathways, each reaction is catalyzed by enzymes. In-

hibition relations in some enzymes have been studied through biological experiments. Our method is

capable to treat this relation by adding the following formula:

¬rti,n(R′)∗z∨¬rt j,n(R′)∗z (11)

where reactions ri and r j are catalyzed by inhibited enzymes, respectively. This inhibition relations refine

output sub-pathways of the method.

Forbidden Metabolites. A further potential application is in drug design, which restricts bi-products

by the effect of compounds included in the drug. In this case, we can test by adding drug compounds as

sources and unexpected bi-products as forbidden metabolites. This is achieved by adding the following

formulas.

∧

mi∈M f

¬mti,n(R′)∗z (12)

whereM f is a set of metabolites which are forbidden to present. Those constraints are useful to refine

outputs when we know such forbidden metabolites in advance.

5 Experiments and Results

To evaluate our method, we use two reaction databases of E. coli K-12. One is the the reaction database

from supplemental data of the literature [1]. Another one is from a well-known biological database

EcoCyc [5] which gathers results of biological experiments and existence knowledge of E. coli. We

downloaded the latest version 13.6 of the reaction database released on the November 2009. In the

following experiments, we use experimentally elucidated sub-pathways as right solutions, which are

respectively obtained from the literature [1] and the database EcoCyc. We modified the Main class

of the SAT solver Minisat1 [6] and used it as a minimal model generator shown in Section 2. Each

1http://minisat.se/
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Table 1: Results for Pathways from [1]

Pathway#
Proposal Beasley [1] Planes [11]

#Steps #Sols. cors. cors. (a) cors. (b) cors.

1 3 1 yes yes no no

2 1 1 yes yes no yes

3 2 38 yes yes yes no

4 1 1 yes yes no no

5 3 4 yes no no yes

6 2 7 yes yes no yes

7 1 1 yes yes no yes

8 3 28 yes no yes no

9 1 3 yes yes no yes

10 1 1 yes yes no yes

Total # of yes in cors. 10 8 2 6

experiment has been done using a PC (Intel Centrino 1.84GHz CPU and 1GB RAM) running Ubuntu

Linux 9.04 within 10 seconds. We have developed a graphical user interface integrating the proposed

method, which aims for smooth evaluation. Figures 6 and 7 are screen shots of our experimental results

from the interface.

5.1 Comparison with Previous Methods

There are two previous method. One is a method using optimization modeling for pathway analyses [1].

The input of this method is a reaction database with stoichiometry. Another one is a constraint based

method for path finding [11]. The input of this method is a reaction database without stoichiometry as

same as the proposed method. Due to the differences of each input, problem formalization and the num-

ber of solutions, it is difficult to make a direct comparison. We thus give an approximate comparison for

10 pathways which are used for both two methods. We use same source, initial, and target metabolites

according to the literature [1]. As right solutions, the method by [11] used liner paths which are cho-

sen from the experimentally elucidated sub-pathways from the supplemental data of the literature [1].

Similarly, we used those sub-pathways omitted bypass reactions as right solutions.

The results are shown in the table 1. First column shows the following pathways: #1 gluconeoge-

nesis, #2 glycogen, #3 glycolysis, #4 proline bio-synthesis, #5 ketogluconate metabolism, #6 pentose

phosphate, #7 salvage pathway deoxythymidine phosphate, #8 Kreb’s cycle, #9 NAD biosynthesis, #10

arginine biosynthesis. Second column shows the number of steps where the most accurate sub-pathway

was found. Third column shows the number of solutions found in the steps shown in the second column.

Columns 4-7 show whether each method could find the structure exactly corresponding to the experi-

mentally elucidated sub-pathways. In columns 5 and 6, (a) represents the objective of minimizing the

total number of reactions and (b) represents the objective of maximizing the production of ATP in the

literature [1]. As a result, we found every sub-pathway corresponding to the experimentally elucidated

sub-pathways with the step z≤ 3. Moreover, the number of solutions are less than 10 except the pathway

#3 and #8. Even for these two pathways, the number of solutions is less than 40, which is still tractable.
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Figure 6: A Glycolysis Sub-pathway on a Whole E. coli Pathway
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Figure 7: A Glycolysys Sub-pathway of the E. coli Pathway

5.2 Accuracy Evaluation on the E. coliMetabolic Pathway

We also apply our method to a whole metabolic pathway of E. coli (see Figure 6). In this experiment, we

choose initial metabolites by calculating percentage of the presence of each metabolites as same as the

literature [1]. For instance, in generally, a cell contains 60 percents water. In order to decide such initial

metabolites we define the percentage of the presence of a metabolite prm = (nm÷ n(R))× 100, where

nm represents the number of reactions in which a metabolite m appears. We compute this percentage

of the presence for every metabolite and if it has the presence more than 1.5 percent we use it as an

initial metabolite. Although 1.5 percent is apparently small value, this is relatively high presence in the

pathway because there are only 16 of 1073 metabolites which have the percentage of presence more than

1.5 percent. We particularly choose metabolites which are the first 6 of 1073 metabolites regarding its

percentage of presence: WATER, PROTON, ATP, ADP, |pi| and NAD. We apply the method to find a

glycolysis sub-pathway in a whole E. coli pathway. As a result, we found 5 sets of reactions (see Table

2). One of them called M5 includes 8 reactions (see Figure 7) corresponding to the conventional gly-

colysis sub-pathway described in EcoCyc. We evaluate the obtained sub-pathway M5 with the following
evaluation value. True positive (TP) is a number of reactions found in the experimentally elucidated so-

lution which are also part of a computational result. False positive (FP) is a number of reactions found in

a computational result but not in the experimentally elucidated solution. False negative (FN) is a number

of reactions found in the experimentally elucidated solution but not in a computational result. Here we
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Table 2: Found Minimal Reaction Sets
Reaction Name (by [5]) M1 M2 M3 M4 M5 EcoCyc

2PGADEHYDRAT-RXN x x x

3PGAREARR-RXN x x x

6PFRUCTPHOS-RXN x x x

6PGLUCONOLACT-RXN x

DLACTDEHYDROGNAD-RXN x x

F16ALDOLASE-RXN x x x

F16BDEPHOS-RXN x

GAPOXNPHOSPHN-RXN x x x

GLU6PDEHYDROG-RXN x

GLYOXIII-RXN x x

KDPGALDOL-RXN x

METHGLYSYN-RXN x x

NAD-KIN-RXN x

PEPDEPHOS-RXN x x x

PEPSYNTH-RXN x

PGLUCISOM-RXN x x x x x

PGLUCONDEHYDRAT-RXN x

PHOSGLYPHOS-RXN x x x

RXN0-313 x x

TRIOSEPISOMERIZATION-RXN x x

define sensitivity Sn = TP/(TP+FN) , positive predictive value PPV = TP/(TP+FP) and accuracy
Ac = (Sn+PPV)/2. As a result, we obtain Sn = 0.727, PPV = 1, Ac = 0.864 for the glycolysis sub-
pathway. The value PPV = 1 means all reactions included in an obtained sub-pathway are also included

in the experimentally elucidated sub-pathway. However, Sn= 0.727 means that some reactions included
in the experimentally elucidated sub-pathway are not included in the obtained sub-pathway. This is be-

cause the experimentally elucidated sub-pathway from EcoCyc contains bypass reactions. While the

sub-pathway of EcoCyc contains a bypass reaction PEPSYNTH-RXNwhich may be needed from a sto-

ichiometry viewpoint. In the case of the glycolysis sub-pathway, PEPSYNTH-RXN is such a bypass

reaction. To support such bypass reactions is a future work.

6 Related Work

As far as the authors are aware, the exactly same problem of the sub-pathway finding problem has

not been yet formalized. Kuffer et al. reported an approach via translation to petri net [9]. Although

their approach considered producible and activatable, did not consider subset minimality of the solution.

Schuster et al. proposed a concept of elementary flux modes and found minimal flux distribution [15].

Their concept of elementary flux mode is closed to our problem, however, they used stoichiometry infor-

mation to solve their problem while our problem only consider the topology of pathways. Beasley and

Planes [1] used an optimization technique to stoichiometry analyses of pathways. Although their outputs

are sometimes correspond to our outputs, their optimization does not guarantee the subset minimality.

Tiwari et al. proposed a method which uses weighted Max-SAT solver [18]. They translated bi-

ological laws into soft constraint represented in a weighted Max-SAT problem. The method thus can

order solutions according to its total weights. However, their ordering of solutions is sometimes not ac-
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ceptable from a biological viewpoint since it does not permit the activation of two reactions which uses

same metabolite simultaneously. Ray et al. reported the logical approach for analyzing pathways using

answer set programming (ASP) and reported how it suits for pathway analyzing. Similarly, Schaub and

Thiele [14] apply ASP technique to analyze pathways. These approaches are also interesting in terms of

translating the relations of reactions into logical form. As far as the authors know, there is a few methods

have been reported for analyses of a whole organism pathway. We believe that our method provides a

new linking method between simple graph-based approaches and those logical methods, which enables

us to analyze complex networks like cells, organisms and life.

7 Conclusion

In this paper, we formalized the sub-pathway finding problem which identifies necessary reactions to

produce target metabolites and presented a translation into a propositional formula. Our method uses a

SAT solver as a model generator and it has the following features. First, our method can treat reversible

reactions without pre-processing and post-processing. Second, it is capable to treat a whole E. coli path-

way. Third, it can restrict the number of solutions to be tractable. These are important features for the

realistic size pathways such as a whole cell or more extended pathways which includes metabolic, sig-

nalling, and gene regulatory networks. There are several important future topics. The proposed method

found each conventional sub-pathways of the 11 pathways on E. coli. For more general evaluation, sta-

tistical analyses with more number of pathways are needed. We also need to consider the quality of

solutions as well as ranking. Translating more biological knowledge is important to find sub-pathways

of more extended pathways.
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Abstract

Building on a technique for associating Hybrid Systems (HS) to stochastic programs written in a

stochastic extension of Concurrent Constraint Programming (sCCP), we will discuss several aspects

of performing such association. In particular, as we proved an sCCP program can be mapped in a HS

varying in a lattice at a level depending on the amount of actions to be simulated continuously, we

will discuss what are the problems involved in a semi-automatic choice of such level. Decidability,

semantic, and efficiency issues will be taken into account, with special emphasis on their links with

biological applications. We will also discuss about the role of constraints and of the constraint store

in this construction.

1 Introduction

Systems biology emerged in recent years as the discipline promising to deepen the understanding of

living beings, studying them from a systemic perspective. Interactions among constituents are considered

in their concerted activity, and biological behavior is seen as an emergent property of these intricate

patterns of cooperation and repression [13].

However, studying biological systems from this perspective is rather difficult for many reasons: the

number of actions and interactions into play is huge, most of them are still unknown or poorly understood,

the complexity of mathematical descriptions grows combinatorially, and efficiency and precision issues

of models are critical.

Stochastic process algebras (SPA) [17], despite coming from the different context of performance

analysis of distributed computing systems, proved to be a promising tool, inasmuch they offer a simple,

compositional, description language that is automatically mapped into the complex mathematical for-

malism of continuous time stochastic processes, for simulation and analysis. Indeed, SPA have at their

disposal automatic reasoning tools both at the syntactic and semantic levels, making them a powerful

framework.

Commonly used SPA in systems biology are stochastic π-calculus [8] and bioPEPA [9]. However,

their simple primitives may make difficult the description of complex interactions, like those typical of

combinatorial biochemical networks [14]. Furthermore, they lack any ready-to-use computational or

reasoning power, which is a limitation when facing the issue of modeling systems at greater level of

detail.

Concurrent Constraint Programming [18], in its stochastic variant, sCCP [3], can be a way to cir-

cumvent these problems. In fact, it combines the simplicity of process algebras for describing agents

with the reasoning and computing capabilities of constraints.

In our attempt to use sCCP as a modeling framework for biological systems, we found two main

advantages:
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1. the “computational twist” of constraints allow a compact description of complex operations, as

those needed to describe combinatorial biochemical networks [2] or spatiality [6], without the

need of introducing further primitives in the language.

2. The separation between agents and the constraint store (cf. Section 2) forces a modeling discipline

that requires to separate the description of the control logic of the system (modeled by agents) from

the description of the configurations of the system (naturally modeled in the constraint store).

This second aspect proved its utility as it greatly simplified the definition of an additional semantics

for sCCP in terms of (a family of) Hybrid Automata [5], thus enhancing the mathematical instruments

at disposal for analysis

However, these two features of sCCP, namely the “computational twist” and the flexible semantics

based on hybrid automata, are somehow in conflict. In fact, the first one exploits the reasoning power of

the constraint store, while the second one works when constraints are simplified to very basic interactions.

Reconciling these aspects is an open problem.

In addition to the above issues, our reflection on the perspectives of usage of sCCP for Systems

Biology must take into account realistic and effective semantics for sCCP. If, on the one hand, the

control mechanisms are naturally interpreted in fully discrete terms, on the other hand, the stochastic as

well as some of the substance-level modelling (constraint) variables, are more naturally kept continuous.

This was the main reason that lead us to the above mentioned Hybrid Automata semantics, which can be

seen as a way to associate sCCP programs to Hybrid Automata organized in a lattice at varying levels of

discreteness.

Some of the features of such (variable) association were expected: the higher the level of discrete-

ness to be maintained, the more adherent the program behaviour to the automaton time-evolution to be

observed. Some other feature we found surprising: stochasticity can sometimes be dropped in favor of

discreteness alone, with a very positive drawback in terms of simulation costs.

We conclude our discussion here putting forward a pair of open problems naturally arising in the

above outlined framework:

1. Is there an optimal level of discreteness to be maintained when associating a hybrid automaton

with a(n sCCP) program?

2. Can we automatically or semi-automatically address the above question by some sort of analysis

of the (sCCP) program?

In this paper, we will not provide answers to such questions, but rather we will discuss these open

problems in more detail, suggesting possible directions of attack. Before doing this, we will briefly

survey the previous work on sCCP and on the hybrid semantics in a non-formal manner, illustrating the

relevant notions by means of an example.

2 Stochastic Concurrent Constraint Programming

sCCP [3] has two basic ingredients: agents and constraints. Agents are the main actors, interacting

by asynchronously exchanging information in form of constraints, through the constraint store. sCCP

has been mainly applied as a modeling language for biological systems [3], using the constraint store

to describe the state of the system, e.g. numerosity of molecular species. As these quantities evolve in

time (and one is precisely interested in such a dynamics), we considered special variables, called stream

variables, which can change value during computation (in contrast with standard logical variables, that
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can be instantiated just once). At least for modelling simple biological scenarios, one needs very simple

constraints, basically comparing and assigning new values to stream variables.

As an example, consider a simple genetic network, with one single gene producing a protein X at a

basal rate kp, acting as its own repressor (by binding in the promoter region of the gene). When the gene

is repressed, it does not produce protein X and, after a delay, it goes back in the normal state (i.e., the

repressor unbinds from the gene). Each copy of protein X is also constantly subject to degradation at rate

kd .

In order to model such a system in sCCP, we need one stream variable keeping track of the amount

of protein X in the system. All interactions, instead, are described by sCCP agents. In particular, we

need a simple recursively looping agent to model degradation and an agent modelling the gene. This

latter agent is slightly more complex, as it describes the control mechanisms that the gene is subject to.

The sCCP program is gene on ‖ degrade, where (* stands for true):

gene on
def

= [∗→ X ′ = X +1]kp
.gene on + [X > 0→∗]kbX.gene off

gene off
def

= [∗→ ∗]ku
.gene on

degrade
def

= [X > 0→ X ′ = X−1]kdX.degrade

The basic actions executable by the agents above are guarded updates of the form [G→ R]λ , where G

is a guard that must be satisfied for the action to be performed and R is the update policy—basically a

conjunction of atoms of the form X ′ = X + k. Furthermore, each action has a stochastic duration, given

by an exponentially distributed random variable with rate depending on the state of the system through

a positive real-valued function λ . Additionally, the language has standard constructs of SPA: stochastic

choice +, parallel composition ‖, and recursion.

The semantics of sCCP is given by a Continuous Time Markov Chain [16] (CTMC). Definitions and

further details can be found in [3].

Remark 2.1. The constraints that can be used to update the constraint store are rather limited, as they

simply add a constant term to some stream variables. This restriction, however, allows to interpret sCCP-

actions as continuous fluxes, a required condition to define the hybrid semantics, see also Section 4. To

model more involved biological systems, more complex update constraints and more complex constraint

stores can/should be considered. For instance, in [2], we used a class of constraints operating on graphs

and stream variables to tame the combinatorial complexity of modelling the formation of protein com-

plexes. We will return on the issue of interfacing these two needs in Section 5.

Looking again at the example, we can see that the parallel operator is used only to compose the

single agents, but not within agents. When such condition is in force, we can represent sCCP agents

as automata, synchronizing on store variables, called Reduced Transition Systems (RTS) [4]. The RTS

of the agents of the example are shown in Figure 1(a). As can be seen, recursion is basically dealt with

by introducing loops in the graphs, whose edges are labelled by rate/guard/update of the corresponding

sCCP action. In Figure 1(a), there are also two additional variables: G1 and G0. They keep track

of which state of the agent is the active one, with G1 = 1 and G0 = 0 corresponding to gene on and

G1 = 0 and G0 = 1 to gene off. The updates of edges deal with such variables mimicking the program

structure, while explicit dependence on G0 and G1 is introduced in rates (i.e. production rate becomes

kpG1, because production is possible only in state gene on). This is a technical trick useful to introduce

the hybrid semantics.

3 Hybrid Automata

The hybrid semantics of sCCP will be defined in terms of Hybrid Automata (HA), see [11] for more

details.
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(b) Hybrid Automaton

Figure 1: (bf1(a)) Reduced Transition System for the agents of Section 2. (bf1(b)) Hybrid Automata

obtained from gene example. Variables Zb and Zu are associated with the edge from geneon to geneo f f

and from geneo f f to geneon of the RTS. See the text for a more detailed discussion on these edge variables.

The basic idea of HA is that they have a mixed discrete/continuous evolution. The discrete part of

the system is described as a labelled graph, while the continuous part is modelled by an array of real-

valued variables X. In each vertex q of such a graph, called mode, variables are subject to a continuous

evolution, usually defined by a set of ordinary differential equations (ODE) Ẋ = Fq(X). The continuous

evolution within a mode can be interrupted by the happening of a discrete event, corresponding to an

edge of the graph. This event happens as soon as specific conditions on variables (described by a guard

predicate) becomes true. Its execution changes the mode of the automaton (hence, also the ODE may

change) and modifies discontinuously the value of variables X, according to an edge-dependent reset

policy.

Usually, compositionality of HA is achieved by a suitable definition of a HA-product, cf. [11, 7].

4 Hybrid Semantics of sCCP

In this section we informally explain the definition of the hybrid semantics for sCCP [5, 7]. The con-

struction is compositional: first, single sCCP agents are converted into HA, then these HA are combined

by taking their product.

The mapping starts from the RTS of each sCCP agent. The first step consists in partitioning the

edges of such a RTS into two sets: those that will contribute to continuous dynamics and those that will

define the discrete skeleton.
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Consider again the RTS of the gene agent of Figure 1(a). It has three edges: we will treat as continuous

only the looping edge on gene on, corresponding to the production of X , while the ones corresponding

to binding and unbinding will be dealt discretely. This is nothing but one possible choice. Think, for

instance, of the case in which all edges are treated as continuous. Actually, all possible partitions are

admissible, and the final choice is left to the modeler.

Once the edges are partitioned, we can construct the graph of the hybrid automaton. This is essentially

derived from the RTS, collapsing nodes connected by continuous transitions and removing edges to be

treated as continuous.

The continuous dynamics within each mode is defined according to continuous transitions connecting

collapsed RTS-states. Consider the continuous transition producing protein X . It modifies only variable

X , increasing it by 1 unit, with rate kPG1. The associated ODE is Ẋ = (+1) · kPG1, an it can be seen as

obtained by multiplying the net increase of X by the rate. In case more than one transition is acting on a

variable, their effect will be summed up.1

The definition of the discrete dynamics, instead, is slightly more complicated. In fact, we need to render

the fact that sCCP actions take time to be executed. This is somehow un-natural for HA, in which discrete

transitions are instantaneous. The idea is to introduce extra (continuous) variables to faithfully govern

firing of discrete transitions. Such firing will happen when a threshold value set at the expected time of

the stochastic transition is reached. Consider the RTS-edge corresponding to the repression of the gene

in our running example. As discussed in [7], we can introduce a new continuous variable—Zb in this

case—and let it evolve according to Żb = kbG1X , i.e. according to the rate of the stochastic transition.

When Zb reaches 1, we fire the transition and reset Zb to zero. Zb can be seen as a clock evolving at a

non-constant speed.

In addition, each edge in the HA will be subject to the same guard and update policies of the correspond-

ing sCCP action.

Once an HA has been build for each sCCP agent, these are composed together by a special product

construction, which adds the right end sided of differential equations, cf. [7] for further details. The HA

obtained for our example is shown in Figure 1(b).

The Lattice of HA. The previous construction is parametric with respect to the partitioning of sCCP

actions into discrete and continuous. We can arrange the different HA so obtained in a lattice, where

at the top element all sCCP actions are treated as continuous, while at the bottom element they are all

kept discrete. Essentially, the fully continuous HA corresponds to the set of ODE associated to an sCCP

program by fluid-flow approximation [4], while the fully discrete HA is a timed automata with skewed

clocks (the so called Multi-Rate Timed Automata, [12]).

In this section, we assumed that the HA obtained has a (non-)deterministic evolution. We can also

maintain the discrete dynamics stochastic, by simply replacing the threshold 1 in the guards of variables

associated to edges by a randomly chosen threshold (exponentially distributed with rate 1) [7].

5 Perspectives

In the introduction, we argued that sCCP has two characterizing features that are somehow in conflict.

On the one side, in order to model more complex systems, we would like to increase the complexity of

constraint-based operations acting on the constraint store. On the other side, however, we want a simple

form for such interactions in order to use hybrid-automata based semantics.

1This is the motivation for requiring constant updates of variables. In fact, it is not clear how to describe in terms of

continuous fluxes other kind of updates, think for instance at X ′ = k.
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How can we reconcile these two aspects? Considering the use of constraints of [2, 6], we can observe

that, in all cases, the basic entity involved in modeling are stream variables. Constraints build a structure

upon them to define complex manipulations and bookkeeping, in order to execute a sequence of simple

operations as a single step activity.

One possibility is, therefore, to “make explicit” the constraints used, finding a low level description

of the constraint store based only on stream variables, and precisely define the effect of each constraint

in this new store. This construction can be hampered by combinatorial explosion of store size and even

by the emergence of infinity in order to deal correctly with recursion. However, this direction is worth

investigating, for it would reconcile these two conflicting aspects of sCCP.

Moving forward to the two open problems stated at the end of our introduction, let us observe that at

the top of the lattice mentioned at the end of the previous section we have a single-mode automaton whose

evolution is entirely described by a set of ODEs. Such an automaton can be seen as a full “mathematical”

reduction of our initial sCCP program: being able to solve the ODEs we would have a complete solution

of the system simulated by the sCCP program. The discrete dimension plays no role at the top of the

lattice.

An attempt to push as down as possible this property, motivates us in the following definition:

Definition 5.1. An hybrid automaton H in the lattice associated to an sCCP program A is said to be an

optimal approximation of A if and only if its bisimulation quotient2 [15] is finite and every H ′ below

H in the lattice does not enjoy this property.

On the ground of the previous discussion we have that given an sCCP program A there always exists

a (not necessarily unique) optimal approximation of A.

Notice that it is not clear the role of stochasticity in Definition (5.1). In fact, we need to explain in

some more detail the relationships intervening among continuity, discreteness and stochasticity in our

construction. The key point is that, CTMC are decidable, in the sense that reachability is computable

(one can compute the probability of reaching any subset of states with arbitrary precision), and model

checking of CTL [10] formulae (or better, its stochastic version CSL [1]) is decidable. However, when

we simplify a CTMC, replacing it by a Multi-Rate Automaton (MRA)3, decidability is lost. This phe-

nomenon is a consequence of the fact that in CTMCs time enters the picture orthogonally with respect to

evolution: The choice of next state and the elapsed time before reaching it are probabilistically indepen-

dent. In MRA, instead, time drives the evolution and the infinite precision involved in its density may

result in the high expressiveness leading to undecidability.

The above discussion suggests that we can can tackle the open problems we proposed also focusing

on the interplay among continuity, discreteness, and stochasticity. Alternatively, we can restrict our

analysis on the removal of stochasticity, perhaps studying the effect of trading non-determinism and

probability in our models. Again, a precise assessment of the level of decidability becomes an important

benchmark for the approach.

As a final consideration we briefly comment on the following issue: is this circle of ideas/problems

peculiar of Systems Biology? Biological systems seem naturally described by Hybrid Automata at a

certain level of abstraction. At the finest level they can be modeled by CTMC, but these models may be

2The bisimulation quotient of an hybrid automaton H can be seen statically or dynamically. Statically, is the coarsest

partition refinement of the infinite state system (whose states are points in the n-dimensional space of flows), stable with respect

to H ’s continuous and discrete transitions. Dynamically, is the fix point of the partitioning procedure splitting states with

respect to the predecessor relation of arcs in H .
3MRA correspond to CTMC in the lattive of non-stochastic HA, as they are the HA associated to the fully discrete case.
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not manageable in practice because of their complexity. However, the efficiency issue is not the most pe-

culiar one for Systems Biology applications. In a certain sense, the features of biological systems hinting

more directly at the necessity of a study of the above mentioned interplay, are their inherent uncertainty

(consequence of realistic quantitative environmental interaction) and their complexity (consequence of

our lack of knowledge of the internal biological control mechanisms). In this perspective, Systems Biol-

ogy can be seen as a most interesting and promising arena in which testing model building techniques to

mix different levels of discrete, continuous, and stochastic components.
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