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Abstract. We present here a way to compute the minimal semi-positive
invariants of a Petri net representing a biological reaction system, as
resolution of a CSP. The use of Petri-nets to manipulate those models and
make available a variety of tools is quite old, and recently analyses based
on invariant computation for biological models have become more and
more frequent, especially in the context of module decomposition. In our
case, this analysis brings both qualitative and quantitative information
on the models, in the form of conservation laws, consistency checking,
etc. thanks to finite domain constraint programming. It is noticeable that
some of the most recent optimizations of standard invariant computation
techniques in Petri-nets correspond to well-known techniques in CSPs,
like symmetry-breaking. A simple prototype based on GNU-Prolog’s FD
solver, and including symmetry detection and breaking, was incorporated
into the BIOCHAM modelling environment. Some illustrative examples
and a few benchmarks are provided.

1 Introduction

Reaction models like those of reactome.org, KEGG pathway database [1] or
biomodels.net represent a growing part of Systems Biology especially for meta-
bolic or signalling pathways, cell-cycle and more generally post-genomic regu-
lation systems. They build on established standards like BioPAX or SBML [2]
to facilitate the exchange and comparison of models and benefit from a large
number of available tools, especially ODE integration based simulators.

The use of Petri-nets to represent those models, taking into account the
difference between compounds and reactions in the graph, and make available
various kinds of analyses is quite old [3], however it remains somehow focused
towards mostly qualitative and structural properties. Some have been used for
module decomposition, like (I/O) T-invariants [4,5], related to dynamical no-
tions of elementary flux modes [6]. However, there is, to our knowledge, very
little use of P-invariant computation, which provides both qualitative informa-
tion about some notion of module related to the “life cycle” of compounds, and
quantitative information related to conservation laws and Jacobian matrix sin-
gularity. Conservation law extraction is actually already provided by a few tools,
but then using numerical methods, based on the quantitative view of the model,
and not integer arithmetic (as in direct P-invariant analysis).



We present here a very simple way to incorporate invariant computation in
an existing biological modelling tool, using constraint programming with sym-
metry detection and breaking. We compare it to other approaches and evaluate
it, for the case of P-invariants, on some examples of various sizes, like the MAPK
cascade models of [7] and [8]. This experimentation is done through an imple-
mentation of the described method in the BIOCHAM modelling environment!
[9,10].

2 Petri-net view of a reaction model

A Petri-net is a bipartite oriented (weighted) graph of transitions, usually repre-
sented as square boxes, and places, usually represented as circles, that defines a
(actually not only one) transition relation on markings of the net, i.e. multisets
of tokens associated to places. The relation is defined by firings of transitions,
i.e. when there are tokens (as many as the weight of the incoming arc) in all
pre-places of a transition, they can be consumed and as many tokens as the
weight on the outgoing arc are added to each post-place.

The classical Petri-net view of a reaction model is simply to associate bio-
chemical species to places and biochemical reactions to transitions.

Ezample 1. For instance the enzymatic reaction written (in BIOCHAM-like syn-
tax), A + E <=> A-E => B + E corresponds to the following Petri-net :

In this Petri-net, starting from a marking with at least one token in A and
in E, one can remove one of each to produce one token in A-E (firing of ¢;) and
then either remove it to add again one token to A and one to E (firing of t_1),
or to add one B and one E (firing of t5).

P (resp. T) invariants are defined, as usual, as vectors V' representing a
multiset of places (resp. of transitions) such that V - I = 0 (resp. I -V = 0)
where I is the incidence matriz of the Petri net, i.e. I;; is the number of arcs

L At review time the version containing P-invariant computation might not have
been released, but only in beta versions available at http://www-rocq.inria.fr/
~soliman/Biocham.dmg



from transition 7 to place 7, minus the number of arcs from place j to transition
1. Intuitively, a P-invariant is a multiset representing a weighting of the places
and such that any such weighted marking remains invariant by any firing; a T-
invariant represents a multiset of firings that will leave invariant any marking
(see also section 4). As explained in introduction, for reaction models these
invariants are used for flux analysis, variable simplification through conservation
law extraction, module decomposition, etc.

3 Related work

To compute the invariants of a Petri net, especially if this computation is com-
bined with other Petri-net analyses, like sinks and sources, traps, deadlocks, etc.
the most natural solution is to use a Petri-net dedicated tool like INA, PiNA,
or Charlie for instance through the interface of Snoopy [11], which will soon
allow the import of SBML models as Petri-nets. Standard integer methods like
Fourier-Motzkin elimination will then provide an efficient means to compute P
or T-invariants. These methods however generate lots of candidates which are
afterwards eliminated and also need to incorporate some means (like equality
class definition) to avoid combinatorial explosion at least in some simple cases,
as explained in section 5.

Another way to extract the minimal semi-positive invariants of a model is
to use one of the software tools that provide this computation for biological
systems, generally as “conservation law” computation, and based on linear al-
gebra methods like QR factorization [12]. This is the case for instance of the
METATOOL [13] and COPASI [14] tools. The idea is to use a linear relaxation
of the problem, which suits well very big graphs, but needs again a posteriori
filtering of the candidate solutions. Moreover, these methods do not incorporate
any means of symmetry elimination (see section 5).

4 Finding invariants as a Constraint Solving Problem

We will illustrate our new method for computing the invariants with the case of
P-invariants (but T-invariants, being dual, would work in the same fashion). For
a Petri net with p places and ¢ transitions (L; — R;), a P-invariant is a vector
VeNst. V.- I=0,ie.V1<i<tV- -L;=V-R;. Since those vectors all live
in NP it is quite natural to see this as a CSP with ¢ (linear) equality constraints
on p Finite Domains variables.

Ezample 2. Using the Petri-net of example 1 we have:

A + E=>A-E
A-E=>A + E
A-E=>B + E



This results in the following equations:

A+ E=AFE (1)
AE=A+E (2)
AE=B+E (3)

where obviously equation (2) is redundant.

The task is actually to find invariants with minimal support (a linear combi-
nation of invariants belonging to N? also being an invariant), i.e. having as few
non-zero components as possible, these components being as small as possible,
but of course non trivial, we thus add the constraint that V' -1 > 0.

Ezxample 3. In our running example we thus add A+ F + AE + B > 0.

Now, to ensure minimality the labelling is invoked from small to big values
and a branch and bound procedure is wrapped around it, maintaining a partial
base B of P-invariant vectors and adding the constraint that a new vector V is
solution if VB € B HB#O V; = 0, which means that its support is not bigger
than that of any vector of the base.

Unfortunately, even with the last constraint, no search heuristic was found
that makes removing subsumed P-invariants unnecessary. Thus, if a new vector
is added to B, previously found vectors with a bigger support must be removed.

This algorithm was implemented directly into BIOCHAM [9], which is pro-
grammed in GNU-Prolog, and allowed for immediate testing.

Ezample 4. In our running example we find two minimal semi-positive P-invariants:

— FE=AF=1and A=B=0
— A=B=AF=1and E=0

5 [Equality classes

The problem of finding minimal semi-positive invariants is clearly EXPSPACE
since there can be an exponential number of such invariants. For instance the
model given in example 5 has 2" minimal semi-positive P-invariants (each one
with either A; or B; equal to 1 and the other equal to 0).

Ezample 5.

() () (a) (e
A1l + B1 => A2 + B2

A2 + B2 => A3 + B3

An + Bn => Al + B1
@ @ & @




A first remark is that in this example, there is a variable symmetry between
all the pairs (A;, B;) of variables corresponding to places. This symmetry is easy
to detect (purely syntactical) and can be eliminated through the usual ordering
of variables, by adding the constraints A; < B,.

This classical CSP optimization is enough to avoid most of the trivial ex-
ponential blow-ups and corresponds to the initial phase of parallel places detec-
tion and merging of the equality classes optimization for the standard Fourier-
Motzkin algorithm [15]. Note however that in that method, classes of equivalent
variables are detected and eliminated before and during the invariant computa-
tion, which would correspond to local symmetry detection and was not imple-
mented in our prototype.

Moreover, in [15], equality class elimination is done through replacement of
the symmetric places by a representative place. The full method reportedly im-
proves by a factor two the computation speed. Even if in the context of the
original article this is done only for ordinary Petri-nets (only one edge from one
place to a transition and from one transition to one place), we can see that it
can be even more efficient to use this replacement technique in our case:

Ezample 6.
A + B => 4xC

Instead of simply adding A < B to our constraints, which will lead to 3
solutions when C' = 1 before symmetry expansion: (A, B) € {(0,4), (1,3),(2,2)},
replacing A and B by D will reduce to a single solution D = 4 before expansion
of the subproblem A+ B = D.

This partial detection of independent subproblems, which can be seen as a
complex form of symmetry identification, can once again be done syntactically
at the initial phase, and can be stated as follows: replace ), k; * A; by a single
variable A if all the A; occur only in the context of this sum i.e. in our Petri net
all pre-transitions of A; are connected to A; with k; edges and to all other A;
with k; edges and same for post-transitions. For a better constraint propagation,
another intermediate variable can be introduced such that A = ged(k;) - A’. In
our experiments the simple case of parallel places (i.e. all k; equal to 1 in the
sum) was however the one encountered most often.

6 Example, the MAPK Cascade

The MAPK signal transduction cascade is a well studied system that appears
in lots of organisms and is very important for regulating cell division [16]. It is
composed of layers, each one activating the next, and in detailed models shows
two intertwined pathways conveying EGF and NGF signals to the nucleus.

A simple MAPK cascade model, that of [17] without scaffold, is used here as
an example to show the results of P-invariant computation.
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Fig. 1. 3 of the 7 P-invariants found in the MAPK cascade model of [17]. The
blue one (RAF), the pink one (MEK) and the green one (MAPK) with intersec-
tions in purple (blue+pink) and khaki (pink-+green).
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Seven minimal semi-positive P-invariants are found almost instantly: RAFK,
RAFPH, RAF, MEKPH, MEK, MAPKPH, MAPK. Three of them are depicted
in figure 1, the full list is given in table 1.

RAFK, RAF-RAFK

RAFPH, RAFPH-RAF~{pl}

RAF, MEK-RAF~{p1], RAF-RAFK, RAFPH-RAF~{pl],
MEK~{p1}-RAF~{pl}, RAF~{pl}

MEKPH, MEKPH-MEK~{p1}, MEKPH-MEK~{p1, p2]

MEK, MAPK-MEK~{pl, p2}, MEK-RAF~{pl}, MEKPI-MEK~{pl},
MEKPH-MEK~{p1, p2}, MAPK~{p1}-MEK~{p1, p2}, MEK~{p1}-RAF~{p1},
MEK~{pl}, MEK~{pl, p2}

MAPKPH, MAPKPH-MAPK~{p1}, MAPKPH-MAPK~{pl, p2}

MAPK, MAPK-MEK~{pl, p2}, MAPKPH-MAPK~{p1}, MAPK~{pl, p2}
MAPK~{p1}-MEK~{p1, p2}, MAPK~{p1}, MAPKPH-MAPK~{pl, p2},

Table 1. P-invariants of the MAPK cascade model of [17]

Note that these 7 P-invariants define 7 algebraic conservation rules and thus
decrease the size of the corresponding ODE model from 22 variables and equa-
tions to only 15.

7 Evaluation on other examples

Schoeberl’s model is a more detailed version of the MAPK cascade, which is
quite comprehensive [8], but too big to be studied by hand. It can however be
easily broken down into fourteen more easily understandable units formed by
P-invariants, as shown in table 2, along other examples representing amongst
the biggest reaction networks publicly available.

lModel [transit.[places[P-invarA[time (s)[Invariant size ‘
Schoeberl’s MAPK (8] 125 105 14 <1|from 2 to 44
Curie’s E2F/Rb [18] ~500| ~400 79 ~10|from size 1 (EP300)
to about 230 (E2F1 box)
Kohn’s map [19] ~800| ~500 65 ~40|from size 1 (Myt1) to
about 200 (pRb or cdk2)

Table 2. Minimal semi-positive P-invariant computation on bigger models of
biochemical reaction networks



We could not compare our results with those provided in [12] since the models
they use, coming from metabolic pathways flux analyses, do not have an integer
stoichiometry matrix, however the examples of table 2 show the feasibility of
P-invariant computation by constraint programming for quite big networks.

Note that for networks of this size, the upper bound of the domain of variables
had to be set manually (to a reasonable value like 8 since actually only 2 or 3 was
needed in all the biological models we have encountered up to now). Otherwise,
the only over-approximation of the upper bound found was the product of the
l.c.m. of stoichiometric coefficients of each reaction, which explodes really fast
and leads to unnecessarily long computation. We thereby lose completeness, but
it is not enforced either by QR-factorization methods, and does not seem to miss
anything on real life examples.

8 Conclusion

P-invariants of a biological reaction model are not so difficult to compute in
most cases. They carry information about conservation laws that are useful for
efficient and precise dynamical simulation of the system, and provide some notion
of module, which is related to the life cycle of molecules. T-invariants are already
used more commonly, and get more and more focus recently.

We introduced a new method to efficiently compute P and T-invariants of a
reaction network, based on FD constraint programming. It includes symmetry
detection and breaking and scales up well to the biggest reaction networks found.
Completeness is lost on the biggest examples but we still look for a better upper
bound on domains to restore it.

The idea of applying constraint based methods to classical problems of the
Petri-net community is not new, but seems currently mostly applied to the
model-checking. We argue that structural problems (invariants, sinks, attrac-
tors, etc.) can also benefit from the know-how developed for finite domain CP
solving, like symmetry breaking, search heuristics, etc. and thus intend to gen-
eralize our approach to other problems of this category.
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Abstract. We present a hybrid system that combines local search techniques and
constraint solving. We apply it to the ab-initio protein structure prediction prob-
lem, modeled in the Face Centered Cubic Lattice with a pairwise contact energy
function. In the literature, the problem is successfully solved using constraint pro-
gramming for proteins with length up to 160 using the HP energy model. In the
case of more complex models, w.r.t. energy and structure, current techniques can
not be easily extended and the constraint approach is not applicable to proteins
of length over 100. The idea described in this paper is based on the alternation
of CSP solving phases and local search phases that modify the predicted spatial
conformation. The approach is implemented and tested in Gecode and EasyLocal
with encouraging results.

1 Introduction

The protein structure prediction problem is recognized to be a challenging problem for
computational biology. Even with strong approximations of the spatial model (simple
discrete lattices) and of the energy model (simple contact energy function), the problem
is proved to be NP-hard. Nevertheless, minimizing simple hydrophobic-polar energy
function and using the discrete lattice model FCC (Face Centered Cube), Backofen
and Will solve it in seconds for proteins of length 160 and more [1]. Moreover, other
researchers (e.g. [9]) approximated the solution to the same problem using local search
and refined meta-heuristics.

More complex models have been proposed for the protein structure prediction prob-
lem. In [3] the problem have been formalized in the FCC lattice using a 20x20 energy
matrix (different contributions for each pair of amino acids) and using information from
secondary structure (known and/or predicted presence of a-helices and [3-strands). The
original implementation in SICStus Prolog CLP(FD) evolved in various directions (e.g.,
[4]) and an ad-hoc constraint solver on lattices (COLA) has been developed [5]. How-
ever, this approach is computationally infeasible when applied to the prediction of pro-
tein structures with more than hundred amino acids. Only the presence of other kind of
partial information (e.g., known folds for sub-blocks picked from the protein data bank)
can speed up significantly the search.

Extended models do not translate into an easy extension of the core computation
idea used in [1]. This becomes unapplicable since the presence of different kinds of



contacts generates an explosion of the number of possible cores. Moreover, the def-
inition of optimal core does not account for any complex structural constraints (e.g.
secondary structure). Any admissible conformation containing further structural con-
straints often can only be obtained from a suboptimal core, namely a set of contacts less
packed in the space. Since the number of such cores is exponential in the number of
cavities in the volume, it is infeasible to precompute them in advance.

In this paper we would like to mix constraint-based and local-search techniques to
improve the performance of the above mentioned (FCC 20x20) constraint-based tools.
This hybrid system combines local search techniques and constraint solving. During the
computation we consider the notion of conformation, which is a protein representation
mapped to the spatial domain (i.e., FCC). Each conformation represents a possible state
of a protein and it is associated to a particular energy, directly derived from the applica-
tion of the pairwise 20x20 energy function. Each conformation may be constrained to
other structural properties (see [3] for a complete list).

The presence of secondary structure information, obtained through neural network
prediction, is necessary in order to predict more realistic conformations. In particular,
it is shown that the contact energy function is not sufficient to reproduce local arrange-
ments such as helices and/or sheets. The secondary structure information compensates
the roughness of the energy model in use. Another advantage from using secondary
structure constraints is that the search space reduces, since rigid blocks with no internal
degree of freedom are imposed in the conformation.

The idea is to alternate CSP solving phases to local search phases. In the former,
given a conformation as input, a CSP is built in order to search a spatially close con-
formation which respects every structural constraint (e.g., two amino acids may not
overlap).

In the latter phase, the conformation is altered by means of a set of moves, which
rotate part of the protein using a specific amino acid as pivot of the rotation. The part
of the protein rotated is weakly allowed to change shape, in order to satisfy the overall
conditions (i.e. the block is not kept fully rigid).

The platform is implemented and tested in Gecode and EasyLocal. Gecode is a
recent C++ constraint solving platform with excellent performances [7], while EasyLo-
cal++ is an object oriented, general and configurable, local search tool [6]. We com-
pared the pure constraint programming approach and the one that combines constraint
programming and local search on 12 proteins with different length and structure: even
without developing particular combination strategies, the conformations found by the
hybrid method improve those found with the pure CP approach.

2 Modeling PF in Gecode

As first test, we encoded in GECODE the same model presented in [3], using some
enhanced representations for rigid substructures like helices and sheets [4]. We briefly
summarize here the essential aspects of the encoding, which is based on the schema
presented in [2]. The interested reader can refer to the just cited references.

The Primary structure of a protein is a sequence s = s; ...S,, where each s; is
an amino acid identified by a letter of an alphabet A, |.A| = 20. The 3D conformation



of the protein is named Tertiary structure. Tertiary structures often contain Secondary
Structure elements (e.g., a-helices and (3-sheets).

We model the protein on the FCC lattice, namely, each amino acid ¢ occupies a
position w(7) in the lattice. FCC points are points (z,y, z) € N3 such that z + y + z is
even. Two FCC points (1, y1, z1) and {x2, yo, 22) are

— contiguous (or next) iff |x1 — xa| < 1, |y1 — yo| < 1,21 — 22| < 1, |21 — @a| +
[y1 — ya| + |21 — 22| = 2.
- in contact iff they are not contiguous and |x1 — 2| + |y1 — yo| + |21 — 22| = 2.

The choice of using the FCC lattice has been often adopted in thermodynamical
studies of stability of small proteins (e.g. [10]) and this lattice is able to represent with
a certain degree of accuracy the typical backbone angles and the shape of secondary
structures. A folding of s is a function w : {1,...,n} — D such that:

1. next(w(i),w(i+1)) fori=1,...,n— 1, and
2. w(i) # w(j) for i # j (namely, w introduces no loops).

The second property is encoded using the well known alldifferent constraint,
after a conversion from 3D coordinates to 1D FD variables. The conversion is based on
an enumeration of the 3D lattice, using a relation of the kind V = M 24+ yM + z,
where M is a sufficiently large number. As shown in [5], using distinct FD variables for
each coordinate hampers the propagators effectiveness and thus the alldifferent
constraint has a limited effect. However, we based this approach on FD variables, in-
stead of 3D box domains an in [5], in order to ease the interaction with GECODE.
Let Pot be a 20x20 matrix associating an energy contribution measure to each pair of
amino acids types s; and s;. The contribution is accounted for when w(7) and w(j) are
in contact.

The protein structure prediction problem can be modeled as the problem of finding
the folding w of S such that the following energy cost function is minimized:

Ew,S) = Z Z contact(w(i),w(j)) - Pot(s;,s;).

1<i<n i+2<j<n

Let us observe that in the FCC each point is adjacent to 12 neighboring points.
However, as explained in [3], we add some extra constraints (e.g. angles) that restrict
to 90° and 120° the bend angles between three consecutive amino acids.

secondary_info constraints encode the Secondary Structure information in the
program. The secondary structure is described by a list of elements of the type:

helix(4,j): si,Sit1,.-.,s; form an a-helix. The modeling of a-helices builds on the
observation that it is sufficient to constrain the first 4 amino acids of the helix to
guarantee its shape—the shape can then be propagated to the rest of the helix via
simple vector equalities [4].

strand(s,j): S;,Sit+1,...,S; are in a J-strand. Similar to the case above.

ssbond(7, j): presence of a disulfide bridge between s; and s;. If (z1,91,21) and
(x9,ya, z2) are the variables for the positions of the two amino acids, then we set
the constraints |x1 — za| <4, |y1 — yo2| < 4, |21 — 22| < 4.



We summarized each protein main features in a file format. Every protein is de-
scribed by: its ID (according to the name used in the protein data bank), the sequence
S of amino acids and its secondary structure information (if any).

We run some tests in order to compare the ability of FD solvers to handle the CSP
described. We removed on purpose every heuristics and search optimizations described
in [4, 5] and we noticed that with the same search parameters Gecode outperforms the
running time of the equivalent SICStus Prolog code by a rather constant speedup. This
search as well as the hybrid approach produce an output file that can be handled by stan-
dard molecular viewers. Complete code is available at www.dimi.uniud.it/dovier/PF/LS.

3 Local Search Moves

In this section we describe the Local Search perturbations that form the second phase
in the hybrid technique. The local modifications of a conformation are defined by a set
of moves that maps a conformation into another one.

3.1 The pivot move

A convenient move we studied is the pivot move, which is proved to be ergodic [8]. The
idea of this class of moves is to keep unchanged the first part of the protein (for example
the first half) and to rotate the second one. The second part should be rotated in the FCC
space as a rigid block while looking for a better associated energy cost. A pivot move
is identified by:

— the pivot amino acid (s;), the last amino acid of the part that remains unchanged;

— a firstfixed amino acid (s;), that identifies the rotating part of the protein (thus
i < 7). Below we explain why we require ¢ + 1 < j.

— some rigid block constraints, that constrain the position of the amino acids of the
moving part of the protein (from s; to s,,).

A good move is influenced by the selection of the pivot. In particular is preferable to
select an amino acid not involved in a-helices and §-strands: in fact such amino acids
are in the middle of a well-structured section of the protein that must not be modified
(e.g. it is not possible to break apart a helix).

The firstfixed amino acid identifies a section of the the protein (between s; and s;)
completely free to move in the FCC lattice (only structural constraints are active, e.g.
next). A firstfixed amino acid too close to the pivot (e.g. s; = s; + 1) limits the pos-
sible rotations of the rigid part of the protein, due to the non overlap constraints and to
the poor degree of freedom of the subsequence between s; and s;. As this subsequence
is enlarged, the possible accommodations of the subsequent rigid block increase expo-
nentially. However, a firstfixed too far from the pivor causes the exploration of the huge
search space for the subsequence s; . .. s;.

Lastly, the rigid block constraints must be selected carefully. They are a set of dis-
tance constraints between all pairs of amino acids in the rotating block as in the in-
put conformation. The constraints can be relaxed (e.g. distances within a range w.r.t.
the original distance, reduced number of pairs) and this case allows multiple solutions



which are spatially close to the original conformation. Once again, the degree of relax-
ation influences the search space and thus the solution times. On one hand, an exact
rigid block set of constraints reproduces exactly the block, but, once rotated, it is not
tolerant to local modifications of the block to avoid some overlaps to the first part of the
protein. On the other hand the complete absence of rigid block constraints (the second
part of the protein is totally free to move in the lattice) causes an inefficient search for
the next conformation and every information about the second part of the protein is
lost. We have experimentally chosen an intermediate approach, where some constraints
between the amino-acids in the rigid block are added (obtaining a semi-rigid block).
Observe that in this way we naturally mix local search and constraint based search.

We performed various preliminary test, to identify the better combination of these
parameters. We decided to select as pivor only the amino acids not involved in a-helices
or 3-strands, to select as the firstfixed amino acid the fifth one after the pivor (i.e. s; =
s; + 9) and to post distance constraint on the rigid block only between the amino acids
of distance six in the primary structure (reduced number of pairs).

3.2 Pivot move implementation

To implement the pivot move we start from a conformation p of the protein encoded
into a Gecode object (a Gecode::Space object). We create a new Gecode::Space object
representing a protein nextp, where we post all the spatial and structural constraint (FCC
lattice, next, no loops, angles and secondary_info constraints). Then we
copy the amino acids s; ...s; from p to nextp; the amino acids from pivot + 1 to
firstfixed- 1 of nextp (s;41...5;-1) are only subject to structural constraint; then we
post the rigid block constraints on the amino acids of nextp from firstfixed to the last
one (s ...58y,).

Once the new protein object is created and all these constraints are posted, the
Gecode search routine is launched for nextp. This CP search explores all the possible
conformations (with respect to the constraints posted), trying to reach a folding with a
better energy cost than the one of p. If the search finds such a folding, we iterate the
process, starting from the conformation of the protein reached in nexp.

3.3 The Local Search algorithm

We inserted the implementation of the pivot move into a basic local search algorithm,
using the functionalities provided by the framework EasyLocal++. The main idea of the
algorithm is to start from an admissible conformation obtained as the first solution of
the constraint programming search, then to randomly select a pivot move and to search
a new conformation with better energy, according to the selected move using constraint
programming search.

The CSP search (both for the first solution and for the pivot move) invokes a labeling
with a leftmost variable selection and median value selection. We investigated various
labeling options and observed experimentally that these ones better fit our problem.

The search on a local move has a timeout, that we call moveTimeout (we used a
value of 1 minute); if a new conformation with a better energy is discovered before



moveTimeout, it is accepted and it becomes the current one. A globalTimeout is se-
lected at the beginning of the execution, so the algorithm iterates until it reaches the
globalTimeout. At the end, the best solution reached is returned. The iteration of the
process depicts a classical hill-climbing algorithm.

When selecting the move, the choice of pivot amino acid determines firstfixed amino
acid and rigid block constraints). As said above the pivot amino acid is randomly se-
lected only among all the amino acids of the protein not involved in a-helices and/or
[-strands. During the random moves exploration, we ensure that the same move is not
tested many times. We need to keep track of the moves already tested, in order to skip
the candidate moves in the history.

Once every move have been tested and no move produces an improvement in the
energy cost, the moveTimeout is multiplied by a constant Inc (we used Inc=2) and the
process is iterated.

4 Results

After preliminary tests performed with the aim of tuning the various parameters (first-
fixed, rigid block constraints, timeouts, search strategies), we tested our hybrid algo-
rithm on 12 proteins of different length and with different secondary structures (the
same used in [5]). For each protein we executed 1 run with the pure CP algorithm and
5 runs with the hybrid approach: the selection of a pivot move is randomly guided, so
different runs may lead to different solutions and we report results on the best run ob-
tained. In Table 1 we report for each protein the search time in minutes and the energy
cost (Ecost) of the best conformation found.

Tests have been performed on a AMD Opteron 280 at 2.2GHz, Linux CentOS ma-
chine with a globalTimeout of 2 hours. We compare the energy cost of the solution
found with the pure constraint programming approach and with the hybrid constraint
programming-local search algorithm. The energy costs do not account for the contribu-
tion of the internal contacts of the secondary structures, since they are constant during
the search process, and thus these results are not comparable to the ones of [3, 4, 5].

We can notice that the energy costs found with the hybrid approach are generally
better than the ones found with the only use of constraint programming. This confirms
our hypothesis that the hybrid approach leads to better solutions in the same amount of
time. With some small proteins the hybrid algorithm stops improving after few minutes:
in this case, it falls into a local minimum and neither increasing the moveTimeout nor
trying different runs can avoid this problem. On the other hand, with some proteins the
pure CP search stops finding better solutions in few minutes, because the search space
to explore is too big and the search diverges. It must be noticed that the energy values
obtained for longer proteins are not yet satisfactory.

Work needs to be done in the local search stage: in fact we noticed that some simple
and useful rotations between contiguous secondary structures are not performed; such
rotations are probably forbidden by the blocks overlap (the rigidity should be be further
relaxed) and by an insufficient number of free amino acids between two contiguous
secondary structures.



Protein CP CP+LS Protein CP CP+LS
ID |Length||Time| Ecost|Time| Ecost|||| ID |Length||Time| Ecost||Time| Ecost
1IEDP| 17 15]-12279 1{-12140(]|| 2IGD | 60 70| -7583| 87|-16631
1EON| 27 39| -7619 5|-12742|||| ISN1| 62 4|-20764| 59|-28853
1VII | 36 16| -9194 1]-14402|||| 1L6T | 78 107|-23883|| 52| -7117
2GP8| 40 53|-12472| 20|-13501|||| ILHS7| 96 30| -5797 1| -2067
1EDO| 45 7|-10917 8]-14747(||[1TQG| 104 49| -8384|| 117|-15333
1ENH| 54 63| -8928| 59|-12386|||| ISA8| 105 67|-14219|| 120|-26443

0
-2500 |
-5000 |
-7500 |

-10000
-12500
-15000
-17500
-20000 Eggﬂs
-22500

-25000
-27500
-30000 T I T T T T T T T T T

Tom-=
zom-=
———a
@O N
ocgm-=
T ZM=
Do=m
azm—
— o -
~mI =
oo--=
o I =

Table 1. Comparison of the solutions obtained by the two approaches on 12 different proteins.
Timings are expressed in minutes.

5 Future Work and Conclusions

This is an ongoing work. Our aim was to prove that on the PF problem on FCC lattice
with 20x20 energy matrix, the hybrid use of local search and constraint programming
outperforms the only use of constraint programming, in terms of quality of solutions
and execution time. We first encoded a basic PF model on FCC with 20x20 energy
matrix into the constraint programming framework Gecode, without including strong
search heuristics (like the ones used in [4, 5]); then we defined a local search move
(the pivot move) in the local search framework EasyLocal++, in such a way that the
pivot move can interact with the constraint programming model. Our tests confirm that
the hybridization of these techniques leads to better solutions with respect to the pure
constraint programming model.

Now that we have ensured the feasibility of this idea and the goodness of the re-
sults, additional tests and algorithm improvements can be performed. We plan to run
the algorithm on other longer and more complex proteins, to refine the parameters with



massive testing, if needed. We can also try to run our algorithm with a longer global-
Timeout. Various ideas can be applied to the hybrid algorithm. For example, we plan
to embed into the constraint programming model some already tested heuristics (the
ones used in [4, 5]): this should improve the performance when searching for a new
conformation, and thus speed up the search.

We can refine the local search strategy: the hill-climbing algorithm is very efficient,
but it is a local algorithm; the use of more refined strategies (such as tabu search) could
avoid falls into local minima. We also think to elaborate more complex local search
heuristics and metaheuristics, derivable from the EasyLocal++ framework.

We can speed-up the performance using the COLA solver [5], a constraint solver in
C specifically designed for the Protein folding problem: embedding local search rou-
tines directly into COLA, instead of using Gecode and EasyLocal++ should outperform
the execution time of the present current approach.
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Abstract. Determining the evolutionary history of a given biological data is an
important task in biological sciences. Given a set of quartet topologies over a set
of taxa, the Maximum Quartet Consistency (MQC) problem consists of comput-
ing a global phylogeny that satisfies the maximum number of quartets. A num-
ber of solutions have been proposed for the MQC problem, including Dynamic
Programming, Constraint Programming, and more recently Answer Set Program-
ming (ASP). ASP is currently the most efficient approach for optimally solving
the MQC problem. This paper proposes encoding the MQC problem with pseudo-
Boolean (PB) constraints. The use of PB allows solving the MQC problem with
efficient PB solvers, and also allows considering different modeling approaches
for the MQC problem. Initial results are promising, and suggest that PB can be
an effective alternative for solving the MQC problem.

1 Introduction

The amount of existing biological data (DNA and protein sequences) has increased the
need for larger and faster determination of evolutionary history (or phylogeny) given
a set of taxa (i.e. a set of related biological species [2]). Moreover, the availability
of data is not always the same for different taxa. This is known as the data disparity
problem [11,12]. In recent years, quartet based methods have received greater attention
from the computational biology community as a way to overcome the data disparity
problem. Quartet-based methods are characterized by first inferring a set of evolutionary
relationships between four taxa, and then from these relationships assemble a global
evolutionary tree. Considering only four taxa in the first step to build the evolutionary
relationships, leads to a greater confidence on the relationships produced. Nevertheless,
the relationships obtained may be conflicting or even missing. The aim of this work
is to obtain the evolutionary tree, under the parsimony assumption, that respects the
maximum number of these relationships on four taxa.

Given a set of quartet topologies over a set of taxa, the Maximum Quartet Consis-
tency (MQC) problem consists of computing a global phylogeny that satisfies the maxi-
mum number of quartets. A number of solutions have been proposed for the MQC prob-
lem, including Dynamic Programming, Constraint Programming, and more recently
Answer Set Programming (ASP) [11,9,10]. ASP is currently the most efficient ap-
proach for optimally solving the MQC problem. This paper develops an encoding for
the MQC problem with pseudo-Boolean (PB) constraints. Initial results are promising,
and suggest that PB can be an effective alternative for solving the MQC problem.

* This work is partially supported by the European Scholarship Program of Microsoft Research.
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> > >

[a, blc, d] [a, c|b, d] [a,d|b, c]

Fig. 1. Graphical representation of the quartet topologies [a, b|c, d], [a, c|b, d] and [a, d|b, c].

Fig.2. Graphical representation of a phylogeny and of the quartet topology for the quartet
{a, b, c, f} derived from the phylogeny.

The paper is organized as follows. The first section introduces both the MQC prob-
lem and the MQI problem. The following section develops a Pseudo Boolean Optimiza-
tion (PBO) model for the MQC problem and Section 4 proposes three optimizations
to the PBO model. Section 5 shows the experimental results obtained and Section 6
presents some conclusions and points some directions for future research.

2 Preliminaries

A phylogeny is an unrooted tree whose leaves are bijectively mapped to a given set
of taxa .S, where each internal node has degree three. A quartet is a size four subset
of S. For each quartet there exist three different possible phylogenies, called quartet
topologies. Consider the quartet {a, b, ¢, d}, the three possible quartet topologies will be
denoted by [a, b|c, d], [a, ¢|b, d] and [a, d|b, c]. Figure 1 gives a graphical representation
of the three possible quartet topologies for the quartet {a, b, ¢, d}. For example, quartet
topology [a, b|c, d] means that the path that connects a and b does not intersect the path
connecting ¢ and d.

Given a phylogeny T on S and a quartet ¢ = {a,b, ¢, d}, a quartet topology gt
is said to be the quartet topology of ¢ derived from 7', if ¢t is the topology obtained
from 7', by removing all the edges and nodes not in the paths connecting the leaves
that are mapped to taxa in g. Figure 2 represents a phylogeny, and the quartet topology
derived from the phylogeny for the quartet {a, b, ¢, f}. The dotted branches show the
path connecting the taxa in the quartet. Since the path that connects a and b does not
intersect the path that connects ¢ and f, then the derived quartet topology is [a, b|c, f].

The set of quartet topologies derived from a phylogeny 7" is denoted by Q7. If a
quartet topology ¢ is the same as the quartet topology derived from 7', then T is said to
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al|blcldle|flg
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Fig.3. Graphical representation of a rooted phylogeny and the associated ultrametric matrix.

satisfy q and q is said to be consistent with T'. In the example of Figure 2, [a, b|c, f] is
consistent with the phylogeny shown, but [a, c|f, g] is not.

Given a set of quartet topologies Q) on the set of taxa S = {s1,...,s,}, if there
exists a phylogeny 7T that satisfies all the quartet topologies in (), then () is said com-
patible. In practice the quartet topologies in () may be inaccurate or even missing. If
the set () contains a quartet topology for each possible quartet of S, then @ is complete
otherwise incomplete.

The problem of Maximum Quartet Consistency (MQC) is the problem where a set of
quartet topologies () on aset of taxa .S = {s1,. .., s, } is given, and returns a phylogeny
T on S, that satisfies the maximum number of quartet topologies of ().

The MQC problem is NP-hard [1] and if @) is complete, then MQC admits a poly-
nomial-time approximation scheme [5]. If @) is incomplete, then MQC is MAX SNP-
hard [5]. The dual problem to the MQC is the problem of Minimum Quartet Inconsis-
tency (MQI). The MQI problem is the problem that given a set of quartet topologies
@ (as in the MQC problem), returns a phylogeny that minimizes the number of quartet
errors, where the set of quartet errors is the set () — Q7. The rest of the paper assumes
that the set of quartet topologies () is complete. In the recent past, different approaches
have been reviewed in the literature for both the MQC and MQI problems. A detailed
review is presented in [10].

3 Pseudo Boolean Model for the MQC Problem

This section develops a Pseudo Boolean Optimization(PBO) model for solving the
MQC problem. The idea of the model is to obtain a rooted phylogeny, from which
it is possible to construct an unrooted phylogeny [6]. Similarly to the existing ASP
solution [10], the PBO model encodes the constraints of representing the rooted phy-
logeny tree as an ultrametric matrix. Moreover, an ultrametric phylogeny satisfies the
maximum number of quartets topologies of a set () if and only if the corresponding
ultrametric matrix M satisfies the maximum number of quartets topologies in () [10].
Consider the set of taxa S = {s1,..., s, } and a set of quartets Q). An ultrametric
matrix M is a symmetric square matrix n X n, where for each ¢ such that 1 <+¢ < n then
M(i,i) = 0,foreach i, jsuchthat 1 < i < j <nthenl < M(i,j) = M(j,i) < n,
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and for each triple of indices 7, j, k such that 1 < 7, 5,1 < n, there is a tie between the
maximum value of M (i, ), M (i,1) and M (j,1).

The values in the ultrametric matrix M, represent the lowest common ancestor in
the rooted phylogeny, that is the value of M (i, j) corresponds to the internal node of the
phylogeny that is the lowest common ancestor between taxa ¢ and j. Figure 3 presents
a rooted phylogeny, where the internal nodes have been labeled. The labels correspond
to integers in decreasing order from the root to the leaves. On the right side of the figure
is represented half of the associated ultrametric matrix. In [4] it is explored the relation-
ship between rooted phylogenies and ultrametric matrixes and presents an algorithm to
obtain a rooted phylogeny from the associated ultrametric matrix in polynomial time.

It was proven in [10] that in order to obtain an optimal phylogeny, the values of the
entries of M can be restricted to 1 < M(7,5) < [%]. To encode the values of M (i, j)
the PBO model introduces a set of Boolean variables M; ; ;. where 1 <1 < j < n and
1 <k < [%]. M; has value 1 iff M (4, j) = k, otherwise M; ;  is 0. To ensure that,
for each pair (4, j), one and only one of the variables M; ; 1, is selected to be true, the
model introduces the following constraint:

[5]
M; =1 ()

k=1

w3

The value of each M (i, j) variable is given by M (i, j) = ,E]l kx M; k.
To ensure that the resulting matrix M is ultrametric, one of the following three
conditions must be satisfied, foreach 1 <i < j <[ < n:

M(i,§) = M(i,1) A M(i,1) > M(j,1), or )
M(i,§) = M(j,1) A M(j,1) > M(i,1),or 3)
M(j, 1) = M(,1) A M(i,1) > M(i, ) (4)

The PBO model associates three new Boolean variables cl; ;;, ¢2; ;1, ¢3; ;,; with
constraints (2), (3) and (4), respectively. Each of the variables cz; ;; is true iff the
associated constraint is satisfied.

Constraint (2) is the logical AND of an equality constraint and a greater than con-
straint. In the PBO model each of these constraints is associated with additional Boolean
variables, respectively, 1} ;; and ¢17 ;. ¢} ;; = 1iff M(i,j) = M(i,1), and can
be implemented with a comparator circuit on the unary representation of M (4, j) and
M (i, 1), using variables M; j and M; ;. 17, = 1iff M(i,1) = M(j,1), and can
also be implemented with a comparator circuit on the unary representation of M (i,1)
and M (4, 1), using variables M, ;  and M ; .. As aresult, c1; ;; is defined as:

cliji = AND(Clzl,j,la Clzz,j,l) )

Variables ¢2; ;; and ¢3; ;,; are encoded similarly. Finally to guarantee that one of
the conditions (2), (3) or (4) is satisfied, the PBO model uses the following constraint:

Cliyj + 021'.,3‘ + C3i,j Z 1 (6)

As the objective is to compute the phylogeny that maximizes the number of quartets
that can be satisfied, then with each quartet is associated with a Boolean variable ¢,
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where 1 < ¢t < |@Q|. q¢; will be true if quartet number ¢ is consistent, otherwise ¢; is
false. A quartet [i, j|I, m] is consistent if and only if one of the following conditions is
satisfied [10]:

M(i, 1) > M(i,5) N M(j,m) > M(i,j),or (7)
M, 1) > M(l,m) A M(j,m) > M(l,m) 3)

Suppose that quartet number ¢ is the quartet [4, j|I, m]. The model associates two
new variables to each of the conditions (7) and (8). Let d1; ;; ., be associated with
condition (7) and d2; ;; . be associated with condition (8). The associated variable g;
is encoded as a gate OR:

gt = OR(d1; j1.m,d2;i j.1,m) ©)

Both the conditions (7), (8) consist of logical ANDs of two greater than conditions.
Thus variable d1; ;; , and d2; ;. are encoded as gates AND in a analogous way to
variables cl; ; ;.

The cost function of the PBO model is then to maximize the number of quartets that

are consistent, that is:
QI

max : Z qt (10)
t=1

4 Optimizations to the PBO Model

This section describes three optimizations to the basic PBO model. The first optimiza-
tion aims reusing auxiliary variables that serve for encoding of some of the circuits
associated with the PBO model. The second optimization is related with the Boolean
variables used for representing the value of each entry in the ultrametric matrix. The
third optimization sets the values for some of M (i, j) variables when it is known that
s; and s; are siblings.

4.1 First Optimization

The objective of the first optimization is to reduce the number of variables used in
the encoding. The reduction is achieved by exploiting the information provided by the
auxiliary variables used for encoding cardinality constraints. In order to implement this
optimization, sequential counters [8] are used. The uniqueness constraint (1) of the PBO
model in Section 3 is split into two constraints. The first constraint deals with the need
to have one at least one variable selected by adding the constraint:

[

w3

1
M >1 (11)

=
Il
—

The second constraint is:

—
nf3
=

M;ir <1 (12)

el
Il
—
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and is encoded in CNF with a sequencial counter [8]. This sequential counter introduces
variables sy 1. These variables have the property that if M; ; , = 1 thenfor1 < k < a
all variables have s, 1 = 0 and fora < k < (%1 then s, 1 = 1. The property enables
the encoding of M (i,j) < M(l,m) by considering the associated variables sy ; of
M (i,7) and of M (I, m). In order to better understand, let the variables sy, 1 associated
to the sequential counter of M (i, j) be denoted by s, . The objective is to encode that
M(i,j) < M(l,m) by re-using the variables s,/ and sﬁc’m. Using the above property,
this can be done by searching for the k where 52/ = 1 and sv™ = 0, which can be

encoded in a variable e,(:’j)(l’m) as a gate AND:

e\ — AND(sp?, NOT(sy™)) (13)
Then variable LT j; » encodes that M (i, j) < M(l,m) by a gate OR:

LT} j1m = OR(e 0™ 1 < | < (g]) (14)

For this optimization, all the other constraints of the PBO model of Section 3 are
maintained, but making use of the variables LT; ;; ,, as appropriate.

4.2 Second Optimization

For the PBO model described in Section 3, for each pair of taxa (4, j), the values of the
variables M (i, j) are encoded through selection variables M; j . where 1 < k < [%].

The first optimization described here replaces the encoding of the selection vari-
ables. Variables M; ; i, are still going to be used to encode M (i, j), but here M; ; x
represents the k—th bit of the binary representation of M (i, j). Now k is limited by
0 < k < [logy([5])]. With this encoding M (i, j) can be obtained by M (i, j) =

Ei%zq%m 2k % M; ;1. Moreover, the constraints used in the encoding need to be
modified. The constraints in Equation (1) that encode the uniqueness of the selection
variables are no longer used. All the other constraints are maintained, but with the new
limit for variable k. Instead of the uniqueness constraints, this optimization requires
that the encoded variables M (4, j) are restricted to {1,...,[5 ]}, thatis 1 < M (i, j)
and M (i, j) < [%5]. The first part is obtained by adding the constraint:

[logo (T35 1))
> Mir=>1 (15)
k=0

For the second part, a new Boolean variable [tb; ; is introduced, that captures the con-
dition that M (7, j) is not larger than [ |. The variables M; ; » are used to representing
this constraint as a comparator circuit.

In order to ensure that [tb; ; is true, the following constraint is added to the model:

Ithi; > 1 (16)
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4.3 Third Optimization

The optimization described in this section follows [11,9, 10]. The objective of this opti-
mization is to previously determine the value of some variables, namely when a pair of
taxa is know to be siblings. The optimization can be used independently of the model
(or optimization) used.

Let S = {s1,...,8,} be a set of taxa and @ be a complete set of quartets . A
Bipartition of S is a pair (X,Y) of nonempty subsets of S, such that S = X UY and
X NY = . Consider a bipartition (X,Y") of S, such that | X| > 2 and |Y| > 2, let
Q(x,y) be defined as Qx y) = {[z1,z2|y1,92] : 2 € X Ay; € Yiori € {1,2}}.
Suppose that three taxa from Y are fixed and also that | X'| = . An [-subset with respect
to (X,Y) is the set of [ quartets from () that contain the three fixed taxa from Y and
one taxa from X . There are a total of ("g l) of [-subsets.

An [-subset is said to be exchangeable on X, if by ignoring the difference of the taxa
from X on the quartets in the /-subset, it produces a unique quartet topology, otherwise
the [-subset is said to be nonexchangeable. In the case where [ = 2, then both taxa in
X are said to be siblings and the following corollary holds:

Proposition 1 (Corollary 2.5 from [10]). Ler S = {s1,...,8,} be a set of taxa, Q
be a complete set of quartets on taxa S. For the pair of taxa (s;, s;) from S, let p1 =
|Q({s:,5,},v) — Q| D2 be the number of nonexchangeable pairs on {s;, s; }.If 2p1+p2 <
n — 3 then s;, sy are siblings in an optimal phylogeny.

In the optimization described in this section, for every pair of taxa, the condition of
the corollary is tested. When the condition is true, for example for taxa ¢ and j, then the
PBO model is augmented with the following constraints:

M;;12>1 (17)

—1xM;;r>0 ,ke{2,...,upperLimit} (18)

The upper Limit in Equation (18) is dependent on the encoding of variable M; ;
(either as described in Section 3 or as described in Section 4.2).

5 Experimental Results

This section presents experimental results comparing the PBO model proposed in Sec-
tion 3 and the ASP model described in [10]. The instances considered were obtained
from [10]. These instances correspond to quartet topologies derived from random gen-
erated trees with a percentage of quartet topologies randomly altered. The percentage
of altered quartet topologies introduces errors in the quartet topologies. Higher per-
centage of altered quartet topologies means a higher possibility of errors in the quartet
topologies of the instance.

In the experiments four models were considered, three obtained from the PBO for-
mulation and one from the ASP formulation. The first PBO model considers the first
optimization described in Section 4.1 and will be referred as PBO+fst. The second
PBO model includes both the optimizations of Section 4.2 and Section 4.3. This sec-
ond model will be referred as PBO+(scd+trd). The last PBO model, called PBO+trd,
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N. Variables N. Constraints
% Altered|PBO+fst|PBO+(scd+trd)|PBO-+trd|PBO+fst| PBO+(scd+trd) [PBO+trd
01 5760 45144 6276.6 | 19890 16238.8 24464
05 5760 45372 6310.8 | 19890 16301.5 24568.5
10 5760 4566 .4 63544 | 19890 16385.2 24708
15 5760 4587.6 6386.4 | 19890 16448.8 24814
20 5760 4611.2 6421.8 | 19890 16519.6 24932
25 5760 4628 4 6447.6 | 19890 16571.2 25018
30 5760 4648 .4 6477.6 | 19890 16631.2 25118
Table 1. Average number of variables and number of constraints for instances with 10 taxa.

CPU Time

% Altered|phy+SModels| PBO+fst |[PBO+(scd+trd)| PBO+trd
01 0.0464 0.7696 04704 0.7316
05 0.3048 22673 1.686 7.0885
10 1.3264 5.7819 5.8872 28.8291
15 24324 12.7119 11.78235 52.6487
20 9.0915 32.2536 17.78277  |68.77968
25 28.4901 60.7041 28.0254 117.6832
30 654176  |121.3564| 52.75086 |239.2057

Table 2. Average CPU time in seconds for instances with 10 taxa.

includes only the third proposed optimization (Section 4.3). In all the PBO models an
encoder was implemented that receives as input the quartet topologies and returns as
output a file in PB format. The generated file was then given as input to the PBO solver.
For all experiments the PBO solver used was minisat+ [3].

The fourth model is the ASP model described in [10]. The phy program, that en-
codes the quartet topologies into answer set programming, was obtained from [10]. The
instances were given to phy, and for each, the parameters given were the number of
taxa involved and the maximum number of quartet errors known in the instance. This
last parameter was set as the number of quartet topologies in the instance. After obtain-
ing the encoded instance, the encoded file was given to the ASP-solver SModels [7]
SModels was configured to obtain all the stable models in order to maximize the num-
ber of quartets satisfied.

The results were obtained on an Intel Xeon 5160, 3GHz server, with 4 GB of RAM.
The results comparing the average number of variables and number of constraints be-
tween the three PBO models is shown in Table 1. As can be seen from the table
the model that requires more variables and more constraints is the PBO+trd model,
whereas, the model that requires less variables and less constraints is the PBO+(scd+trd).

Table 2 compares the average CPU times on the instances considered for all the
PBO models and the phy+Smodes model.

A few conclusions can be drawn from the results. First comparing the PBO+fst and
the basic PBO+trd model. The sharing of auxiliary variables introduced by the first op-
timization is an important aspect in this problem. This optimization reduces the number
of variables used by the encoding as well as the number of constraints. This reduction
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leads to lower CPU time spent by the PBO-solver. Nevertheless, model PBO+(scd+trd)
reduces even further the model by considering the selection variables as bits of the bi-
nary representation of values in M . Again, it can be seen from Table 2, that the reduc-
tion on the number of variables and constraints used by the encoding resulted in lower
CPU times spent by the PBO-solver, where the model PBO+(scd+trd) is on average
approximately 4 times faster than the PBO+1rd and 1.6 times faster than PBO+fst.

Comparing the best of our PBO models (PBO+(scd+trd)) with the ASP model, the
ASP model is more effective when the percentage of modified quartets is small, but
the PBO+(scd+trd) model becomes more when the percentage of modified quartets
increases.

6 Conclusions

This paper proposes a first attempt at solving the MQC problem with PBO. The new
PBO model is compared with a recent solution based on ASP [10], which is currently
the most efficient for the MQC problem. Despite the number of the taxa considered be-
ing modest, the results show that the PBO model can be beneficial when the number of
expected quartet errors is high. The PBO model is still recent, and additional modeling
insights and corresponding performance improvements are to be expected in the near
future.

Future research will involve developing optimizations to the PBO model. For ex-
ample, by encoding with PB constraints some of the optimizations proposed in the
literature for the MQC problem. Furthermore, experiments will consider larger sets of
taxa as well as real world data.
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Abstract. Haplotype inference is an important and computationally challenging
problem in genetics. A well-known approach to haplotype inference is pure par-
simony (HIPP). Despite being based on a simple optimization criterion, HIPP is
a computationally hard problem. Recent work has shown that approaches based
on Boolean satisfiability namely pseudo-Boolean optimization (PBO), are very
effective at tackling the HIPP problem. Extensive work on PBO-based HIPP ap-
proaches has been recently developed. Considering that the PBO problem, also
known as 0-1 ILP problem, is a particular case of the integer linear programming
(ILP) problem, generic ILP solvers can be considered. This paper compares the
performance of PBO and ILP solvers on a variety of HIPP models. We conclude
that specialized PBO solvers are more suitable than generic ILP solvers.

1 Introduction

Understanding genetic differences between human beings is a crucial step towards the
diagnosis and prevention of genetic diseases. Haplotype inference is a key problem to
solve for achieving this goal, since haplotypes include most of the information about
human genetic variations. A well-known haplotype inference approach is the pure par-
simony (HIPP) which, among the possible solutions, chooses the one with the smallest
number of distinct haplotypes [7].

Former work on the HIPP problem was mainly based on integer linear programming
(ILP) [7,2,3]. Afterwards, Boolean satisfiability (SAT) [9] and pseudo-Boolean opti-
mization (PBO) [5] have been used to solve the problem. Recently, PBO HIPP-based
approaches have been improved, generating further reduced models [6]. Considering
that PBO is a particular case of ILP, existing PBO models can also be solved by generic
ILP solvers.

This work compares the performance of different HIPP models described in the
literature [2,5,6], using different PBO solvers [11,10,4,1] and the generic ILP solver
CPLEX. To the best of our knowledge, such a comparison has never been made in the
past. This paper aims at performing a comprehensible evaluation of different models
and solvers. The analysis of the experimental results gives insights to select the most
appropriate modelling techniques depending on the kind of solver being used.

The paper is organized as follows. The next section describes the HIPP problem.
Section 3 details recent PBO HIPP models, namely RPoly [5] and the recent improve-
ments to the model [6]. Afterwards, on section 4, experimental results comparing ILP
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and PBO approaches to the HIPP problem are presented. Finally, the paper concludes
in section 5.

2 Haplotype Inference by Pure Parsimony

Single nucleotide polymorphisms (SNPs) correspond to sites in the DNA sequence
where mutations have occurred and which represent a significant variability on the pop-
ulation. Haplotypes can be seen as a sequence of SNPs highly correlated, within a single
chromosome. It is technically difficult to obtain haplotypes directly. Instead, genotypes,
which correspond to the mixed data of two haplotypes on homologous chromosomes,
are experimentally obtained. The haplotype inference problem consists in finding the
set of haplotypes which originated a given set of genotypes.

Considering that mutations are rare, we may assume that each SNP can only have
two values. Each haplotype is therefore represented by a binary string with size m € N,
where 0 represents the wild type and 1 represents the mutant type. Each site of the
haplotype h; is represented by h;; (1 < 7 < m). Each genotype is represented by
a string, with size m, over the alphabet {0, 1,2}, and each site of the genotype g; is
represented by g;;. Each genotype is explained by two haplotypes. A genotype g; € G
is explained by a pair of haplotypes (h¢,h?) such that

hg;if he; = hY;
J— ] (i (¥]
i = {2 if Ry, # WY %

with 1 < 5 < m. A genotype site g;; with either value O or 1 is a homozygous site,
whereas a site with value 2 is a heterozygous site.

Definition 1. Given a set G of n genotypes each with size m, the haplotype inference
problem consists in finding a set of haplotypes 'H, such that each genotype g; € G is
explained by two haplotypes h%, h® € ‘H.

1 K2

For each genotype g with k heterozygous sites, there are 21 pairs of haplotypes
that can explain g. For example, genotype g; = 202 can be explained either by hap-
lotypes (000,101) or by haplotypes (001,100). Several approaches to the haplotype in-
ference problem have been suggested. Given that individuals from the same population
share many haplotypes, the pure parsimony approach searches for a solution with the
smallest number of distinct haplotypes.

Definition 2. The haplotype inference by pure parsimony (HIPP) problem consists in
finding a solution to the haplotype inference problem which minimizes the number of
distinct haplotypes [7].

Example 1. Consider the set of genotypes G: g1 = 022, go = 221 and g3 = 222.
There are solutions using 6 different haplotypes H;: h§ = 001, h} = 010, h§ = 011,
h} =101, h% = 000 and h% = 111. However the HIPP solution only requires 4 distinct
haplotypes Ha: h¢ = 011, h% = 000, h§ = 011, h = 101, h = 011 and h} = 100.

It has been shown that the HIPP problem is NP-hard [8].
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3 ILP/PBO-based HIPP Models

With a few notable exceptions [12], early work on the HIPP problem used models based
on integer linear programming [7,2,3]. The original ILP model, RTIP [7], has exponen-
tial space complexity on the number of heterozygous sites because, in the worst case,
it requires the enumeration of all possible pairs of haplotypes that can explain each
genotype. Afterwards, two polynomial ILP models, PolyIP [2] and HybridIP [3], were
proposed .

Recently, a very competitive SAT-based approach, SHIPs [9], suggested an incre-
mental algorithm that, starting from a clique-based lower bound on the number of re-
quired haplotypes, models the problem into SAT and searches for a HIPP solution. If
no solution is found, the lower bound is incremented by one and a new SAT instance
is generated. When a solution is found, the minimum number of haplotypes is given by
the value of the lower bound. More recent approaches use pseudo-Boolean optimiza-
tion models [5,6]. These models represent an improvement in terms of the efficiency of
HIPP solvers.

The Reduced Poly model (RPoly) [5] proposed a number of simplifications to the
Poly model. The RPoly model associates two haplotypes (h¢, h?) with each genotype
gi,for 1 <17 < n. A variable ¢;; is associated with each heterozygous site g;;, such that
tij = 1if h;-fj = 1land hgj = 0, whereas ¢;; = 0 if hfj =0 and hi?j =1.

Another key issue in the RPoly’s formulation is the notion of incompatibility. Two
genotypes are incompatible if they cannot be explained by a common haplotype, or
equivalently, genotypes g; and gy, are incompatible if there exists j (1 < j < m) such
that g;; + gr; = 1. Otherwise, they are said to be compatible. For candidate haplotypes
h and h, with p,q € {a,b} and 1 < k < i < n,a variable ¥/ is defined, such that,
«?1 = 1 if haplotype h! of genotype g; and haplotype h{ of genotype g, are different.
If two genotypes are incompatible, then they cannot share an explaining haplotype, and
consequently, for the four possible combinations of p and ¢, 2! = 1.

Finally, in order to count the number of distinct haplotypes used, variables u! are
defined such that uf” = 1 if haplotype A, which explains genotype g;, is different from
all the haplotypes which explain genotypes g, with k£ < ¢. The conditions on variables
u? are

Z aPd — P < 2i -3, )
1<k<i;q€e{a,b}

with p € {a,b} and 1 < i < n. The objective function minimizes the sum of variables
ub.

An improved RPoly model was recently proposed [6]. This new model, NRPoly, in-
tegrates the SHIPs clique-based lower bound in the RPoly model and extends the model
with additional constraints. The components of the SHIPs lower bound allow both fix-
ing the value of some of the u! variables and also avoiding generating the constraints
involving fixed u? variables [9]. Moreover, the order in which the genotypes are con-

sidered must reflect the order in which the genotypes are used in the lower bound [6]. In

! Throughout the paper we will remove the suffix /P and use only Poly and Hybrid.
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practice, the integration of SHIP’s lower bound allows fixing the value of many u?! vari-
ables and, as several constraints need not be generated, allows significantly reducing
the size of the model.

The second optimization is related with a key simplification of the RTIP model,
which consists in not considering pairs of haplotypes when both of them do not explain
more than one genotype. Actually, if a genotype g; is not incompatible with all other
genotypes, then at least one of the haplotypes that explain g; must explain other geno-
type. For each genotype g; € G compatible with at least one more genotype in G, the
following constraint is generated,

> 2P 4 ul +ub < 4K 41, 3)
k>i;p,q€{a,b};r(k,i)

where predicate x(k, ) is defined true if g, and g; are compatible and K is the cardi-
nality of the set {g, € G : k > i A k(k,7)}.

The last optimization consists in adding cardinality constraints on the values of
variables . For many combinatorial problems, adding cardinality constraints to the
model can prune the search space, helping the solver to find a solution. Clearly, two
different genotypes ¢; and gj, cannot be explained by the same pair of haplotypes, and
then g; and gj, can be at most explained by one haplotype in common. Therefore, for
each pair of distinct genotypes ¢; and g, (K < 1), if g; and g are compatible and
non-homozygous, then

Y] )

p,q€{a,b}

4 Generic ILP vs Specialized 0-1 ILP for the HIPP problem

In this section we compare the relative performance of discrete optimization HIPP mod-
els using different 0-1 ILP solvers and a generic ILP solver. A considerable number of
HIPP models and solvers are evaluated. To the best of our knowledge, such comparation
has never been performed so far.

4.1 Experimental Setup

An extensive evaluation, using 1183 problem instances [5] including real and synthetic
data, has been performed. The solvers used were MiniSat+ [4], Pueblo [11] version 1.5,
the latest version of BSOLO [10], PBS4 [1], glpPB release 0.2 and CPLEX version
11.0 (www.ilog.com/products/cplex/). The results were obtained on an Intel Xeon 5160
server (3.0GHz,4MB RAM) running Red Hat Enterprise Linux WS 4. The timeout for
each instance was set to 1000 seconds.

4.2 Results

The Poly, RPoly and NRPoly models were adapted to be run by the five different 0-1
ILP solvers (Minisat+, Pueblo, BSOLO, PBS4 and glpPB) and the generic ILP solver
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Table 1. Number of instances aborted (out of 1183) for each model and solver (timeout 1000s)

| | PBO solver [ILP Solver]

Model |MiniSat+ Pueblo BSOLO PBS4 ¢lpPB| CPLEX
Poly 82 251 486 605 1091 705
RPoly 36 127 290 326 723 234
NRPoly 18 55 120 108 611 249

Table 2. Number of instances aborted (out of 1183) using CPLEX, on each ILP model (timeout
1000s)

Model |RTIP|Poly|Hybrid|RPoly|NRPoly
# aborted| 378 | 707 | 717 | 234 | 249

CPLEX. All solvers are then being evaluated on exactly the same models. Table 1 pro-
vides a summary of the results obtained, with the number of instances aborted (out of
1183) for each model.

Clearly, the best performing solver for each of the three models is MiniSat+. In
general, MiniSat+, Pueblo, BSOLO and PBS4 solvers outperform CPLEX. The only
exception is with the RPoly model, where CPLEX solves more instances than both
BSOLO and PBS4.

For the results shown, the Poly model used is a re-implementation of the model
described in [2]. The original Poly model gives similar results, aborting 707 instances
instead of the 705 shown, using CPLEX. Even though the original Poly model was
developed to be solved using CPLEX, the results suggest that most of the specialized
0-1 ILP solvers perform better for this model.

The glpPB solver is the worst performing solver for each of the three models (Poly,
RPoly, NRPoly). glpPB is a ILP-based pseudo-Boolean solver, that uses the GNU linear
programming kit (GLPK, www.gnu.org/software/glpk/). Hence, the glpPB ILP-based
solver implements some of the techniques also used by CPLEX, but glpPB is not as
optimized as CPLEX.

For all PBO solvers, NRPoly is shown to be more robust than the previous RPoly
model. Solving the NRPoly model using MiniSat+, Pueblo, BSOLO or PBS4, reduces
at least by 50% the number of instances not solved within 1000 seconds. Using the
glpPB solver , the number of aborted instances is reduced in 15%. However, the generic
ILP solver, CPLEX, does not benefit from the techniques introduced in the new model.
Indeed, the NRPoly model aborts 15 instances more than the RPoly model, using
CPLEX.

Table 2 summarizes the number of aborted instances for each model using CPLEX.
For RTIP, Poly and Hybrid the same code used in [3], developed to be used with
CPLEX, has been run. The RPoly and NRPoly models were adapted to be run by
CPLEX. The number of instances aborted by the most recent models, RPoly and NR-
Poly, is much smaller than the number of instances aborted by the previous models,
confirming that the new models are more robust. However, as already mentioned be-
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Table 3. Number of instances aborted (out of 1183) by each version of NRPoly model using
CPLEX

Model |RPoly|NRPoly v/|NRPoly v2|NRPoly
# aborted| 234 258 257 249

fore, the most recent model, NRPoly, does not perform as well as the RPoly model, in
contrast with PBO solvers.

In order to understand whether NRPoly performs worse than RPoly due to a par-
ticular feature of the NRPoly model, we analyzed the performance of NRPoly for each
additional new technique included in this model. Table 3 presents the number of aborted
instances for each NRPoly version. We call NRPoly vI to the version that only integrates
the lower bound of SHIPs. NRPoly v2 corresponds to the version with the lower bound
of SHIPs and cardinality constraints on the x variables. The final version, that includes
also the RTIP pruning, is simply NRPoly. As can be concluded, the integration of the
lower bound of SHIPs is the reason why NRPoly performs worse than RPoly (24 more
instances are aborted) when using CPLEX. In fact, both the integration of cardinality
constraints and the RTIP pruning have been shown to help the CPLEX solver.

Finally, figure 1 provides a plot comparing RPoly using either MiniSat+ or CPLEX,
and NRPoly using either MiniSat+ or CPLEX 2. RPoly with MiniSat+ is more efficient
than RPoly with CPLEX (36 vs. 234 aborted instances) and NRPoly with MiniSat+
is more efficient than NRPoly with CPLEX (18 vs. 249 aborted instances). The set of
instances aborted using MiniSat+ is a subset of instances aborted by CPLEX. This result
is not surprising given that Poly with MiniSat+ has been shown in the past to be more
efficient than Poly with CPLEX [5]. However, taking into account that the two versions
of Poly were not implemented by the same authors, this new comparison was deemed
necessary.

5 Conclusions

This paper analyzes the performance of different generic and specialized ILP solvers on
recently proposed HIPP models. Our experiments show that the SAT-based PBO solvers
are, in general, more suitable than the state of the art generic ILP solver CPLEX. The
experimental results confirm that the poor performance of CPLEX is a consequence of
the ILP techniques used. Similar conclusions can be drawn for the ILP-based glpPB
solver, which is the worst-performing ILP solver for the HIPP problem. glpPB uses
some of the techniques used by CPLEX, but is significantly less optimized. Moreover,
the results for CPLEX and glpPB suggest that similar results would be obtained in case
a different ILP solver was considered.

Our conclusion is that, for the HIPP case and probably for other problems which
can be naturally formulated as a 0-1 ILP problem, specific PBO solvers should be con-

% Each point in the plot corresponds to a problem instance, where the x-axis corresponds to
the CPU time required by MiniSat+ and the y-axis corresponds to the CPU time required by
CPLEX.
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Fig.1. CPU time results for RPoly and NRPoly

sidered. Furthermore, we observe that some modeling techniques used to optimize the
PBO approaches do not produce improvements when the ILP solver CPLEX is used.

Acknowledgments

This work is partially supported by Fundac@o para a Ciéncia e Tecnologia under re-
search projects SATPot (POSC/EIA/61852/2004) and SHIPs (PTDC/EIA/64164/2006)
and PhD grant SFRH/BD/28599/2006, and by Microsoft under contract 2007-017 of
the Microsoft Research PhD Scholarship Programme.

References

1. F. Aloul, A. Ramadi, I. Markov, and K. Sakallah. Generic ILP versus specialized 0-1 ILP:
an update. In Proc. IEEE/ACM International Conference on Computer-Aided Design, pages
450-457, 2002.

2. D.Brown and I. Harrower. A new integer programming formulation for the pure parsimony
problem in haplotype analysis. In Workshop on Algorithms in Bioinformatics (WABI’04),
pages 254-265, 2004.

3. D. Brown and I. Harrower. Integer programming approaches to haplotype inference by
pure parsimony. IEEE/ACM Transactions on Computational Biology and Bioinformatics,
3(2):141-154, 2006.

4. N. Eén and N. Sorensson. Translating pseudo-Boolean constraints into SAT. Journal on
Satisfiability, Boolean Modeling and Computation, 2:1-26, 2006.

5. A. Graga, J. Marques-Silva, I. Lynce, and A. Oliveira. Efficient haplotype inference with
pseudo-Boolean optimization. In Algebraic Biology 2007 (AB’07), pages 125-139, 2007.

6. A. Graga, J. Marques-Silva, I. Lynce, and A. Oliveira. Efficient haplotype inference with
combined CP and OR techniques (short paper). In 5th International Conference on Inte-
gration of Al and OR Techniques in Constraint Programming for Combinatorial Problems
(CPAIOR’08),2008. Accepted for publication.



8

10.

11.

12.

A. Graga et al.

. D. Gusfield. Haplotype inference by pure parsimony. In /4th Annual Symposium on Combi-

natorial Pattern Matching (CPM’03), pages 144155, 2003.

. G. Lancia, C. M. Pinotti, and R. Rizzi. Haplotyping populations by pure parsimony:

complexity of exact and approximation algorithms. INFORMS Journal on Computing,
16(4):348-359, 2004.

. L. Lynce and J. Marques-Silva. Efficient haplotype inference with Boolean satisfiability. In

National Conference on Artificial Intelligence (AAAI), 2006.

V. Manquinho and J. Marques-Silva. Effective lower bounding techniques for pseudo-
Boolean optimization. In Design, Automation and Test in Europe Conference and Exhibition
(DATE’05), pages 660-665, 2005.

H. M. Sheini and K. A. Sakallah. Pueblo: A hybrid pseudo-Boolean SAT solver. Journal on
Satisfiability, Boolean Modeling and Computation, 2:165-189, 2006.

L. Wang and Y. Xu. Haplotype inference by maximum parsimony. Bioinformatics,
19(14):1773-1780, 2003.



Constraints Programming for Unifying Gene
Regulatory Networks Modeling Approaches

Damien Eveillard!, Jonathan Fromentin? & Olivier Roux?

! Computational Biology (ComBi) group, LINA UMR 6241, CNRS & Université de
Nantes
2, rue de la Houssiniere - BP 92 208 - 44322 Nantes CEDEX 03
damien.eveillard@univ-nantes.fr
2 IRCCyN UMR 6597, CNRS & Ecole Centrale de Nantes
1, rue de la Noé - BP 92 101 - 44321 Nantes CEDEX 03

{jonathan.fromentin,olivier.roux}@irccyn.ec-nantes.fr

Abstract. Qualitative approaches, like Piecewise-Affine Differential Equa-
tions (PADESs) or those inspired from the R. Thomas formalism, repre-
sent one of the major recent improvements in biological modeling. We
show herein that these approaches might be naturally represented within

a unified theoretical framework using constraints. This result allows us
to reason about biological models which is helpful for (i) passing from
one qualitative formalism to another one and as well for (ii) building
a constraints-based protocol that opens perspectives on modeling large
genetic regulatory systems.

1 Introduction

Experimental approaches that study living system behaviors, focus on various
and complementary aspects: (i) a set of genes that composes gene regulatory
networks and (ii) a set of proteins that shapes metabolic networks. However, de-
spite their clear experimental distinction, both components belong to the same
system and interact between them for producing specific dynamical biological
behaviors (see Fig. 1 for illustration). It hence remains interesting to mix up
this distinct information through a unique modeling approach. It is achieved by
various recent modeling techniques that focus on the dynamical biological be-
havior (see [1] for review) with a special emphasis on their qualitative behaviors.
These approaches consider the gene interaction as the corner stone of an accurate
macromolecular system modeling. Like this, each gene regulatory reaction sum-
marizes a protein production that activates/represses the target gene. Among
these modeling techniques, the approaches based on Piecewise-Affine Differential
Equations (PADEs) [2,3] and the R. Thomas formalism [4] showed astonishing
achievements at investigating gene regulatory network properties and share as
well common biological assumptions (i.e. discretizing the gene interaction im-
pact). However, although these modeling techniques show at similar biological
results, they focus on distinct theoretical features. We propose to present herein
theoretical investigations that show that two modeling approaches might be
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Fig. 1. Description of a two genes interaction network that resumes a system composed
of genes x and y. The gene x produces the protein X that activates the transcription
of genes z (i.e. auto-activation) and y. It implies a production of the protein Y that
represses the transcription of the gene z.

unified within a unique framework using the constraints programming. It em-
phasizes a description of a novel biological modeling protocol that deals with
assumptions used in either formalisms. It allows as well further investigations
like a fine reasoning on constraints related to specific biological behaviors.

This paper will introduce first in Sec. 2 the unified constraints based frame-
work. After a brief overview of the modeling approaches of interest (Sec. 2.1),
we are going to show how to transform a PADEs model and a Thomas’s model
into a set of constraints (Sec. 2.2). This set of constraints describes the discrete
dynamics that might be investigated for a better understanding of the biologi-
cal behaviors. As a guideline, such a protocol will be illustrated on a simplistic
system shown in Fig. 1. Second, Sec. 3 will present two kinds of analysis based
on the previous constraints. In particular, for investigating large gene regulatory
network, Sec. 3.1 will show a constraints based trimming approach that restricts
the study of the model on the behaviors of interest (i.e. experimentally inves-
tigated genes). Such a refinement will allow a more precise reasoning using a
symbolic model-checking (Sec. 3.2) that focuses on interesting behaviors for an
experimental validation.

2 Constraints for Modeling Genetic Regulatory Systems

2.1 Qualitative Approaches

The regulation of genetic system is achieved via macromolecular interactions that
describe positive and negative feedback loops. Qualitative approach appeared
quickly as an appropriate way for investigating such a complexity. We mention
herein the formalisms that have been successful during the last decade and that
might be expressed in a natural manner by a set of constraints.

The Biological Regulatory Graph (BRG) is widely applied for a discrete modeling
of gene regulatory networks like in Fig. 1. A BRG is a labelled directed graph
G = (V, E) where V is the set of vertices and FE is the set of edges (see Fig. 2(a)).
Each edge (i — j) € E is labelled with a couple (aj,0;;) where o € {+,—} is



the sign of interactions (respectively activation and repression) and 6;; is the
concentration threshold beyond which the regulation is effective.

Notation 1 We note L;, the set of labels related to the requlatory functions of
the gene i that we call the resources of i.

The System of Piecewise-Affine Differential Equations (PADEs) represents as
well the dynamic of a genetic regulatory network [5,6]. The system follows the
form:

i; = fi(x) —viz; with 0<x; and 1<i<n (1)

where x = (x1,...,2,) is a vector of protein concentrations called the quanti-
tative state of the system. (1) describes the variation of the concentration z; as
the difference between the rate of synthesis f;(z) and the rate of degradation
~iz;. Note that f;(x) expresses the dependency between the synthesis rate of ¢
and its regulator concentrations. It can be defined as:

fi(w) = ki + Z kijbij(x) (2)

JEL;

where k;,k;; € R are the kinetic parameters and, b;; is a sigmoidal func-
tion approximated by a combination of step functions s and s~ such as for a
regulator gene ¢’ of ¢, we have:

1, xy >0y
+ _ ) 7 7 — _ +
S $i1792‘/ = et s mi/,ﬁi/ =1-—s xi/,Hir 3
(w,60) {0’ o (w16 (b))
where 6; is a concentration threshold. For illustration, Fig. 2(b) shows the PADE
system that models the biological behavior of the system in Fig. 1.

The Discrete Modeling Formalism of R. Thomas (Fig. 2(c) for illustration) is
a natural discrete description of the BRG shown above and represents as well
a discretization of a PADE system. The Thomas’s formalism have to take into
account two kinds of parameters.

Numbering thresholds and discretization state. The thresholds number-
ing keeps the order between the qualitative thresholds mentioned above.
Therefore, for the thresholds of i like 6} < 2 < --- < 07 then its qualitative
thresholds are t} < t? < --- < t? with Vj € [1,n], / = j. The states of the
system are thus discretized into domains by the function D defines as:

tl, 0 <z <6
Dj(x;) = {0 v < 61 (4)

Parameters in discrete modeling. To each qualitative domain s is associ-
ated a qualitative focal point standing for the tendency of evolution in s.
For each qualitative domain s within the discrete abstraction, the vector of
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discrete parameters (K1 4, (s), - - - s K w, (s)) gives the position of the qualita-

tive focal point. The focal point is the abstract region containing the steady
state for the PADEs in each domain. The concentration evolution is contin-
uous in a domain and the system state tends toward the focal point of the
domain. The discrete parameter of the gene ¢ in the domain s is obtained
with #; = 0in (1) and b;; = 1 (due to the presence of the resource j) in (2):

kit 2 icw(s) Fij
K’iw- s) — D; ZJE il) Y (5)
wi(s) vi

where w;(s) C L; represents the resources of ¢ in the domain s. The valuation
of these discrete parameters gives a discrete dynamics where each transition
between two contiguous domains is asynchronous. For illustration, it gives
the discrete dynamics shown in Fig. 2(d).



2.2 Using Constraints for Building a Discrete Dynamics Model

Based on previous descriptions, we propose to transform one formalism into
another using an automatic approach that integrates the qualitative formalisms
(see Fig. 2).

Transforming a BRG or a PADEs system into the Thomas’s formalism (Fig. 2(a)
and Fig. 2(b) to Fig. 2(c)) is achieved by reasoning on the knowledge associated
with the thresholds. There can be simple equality or inequality constraints that
allow the numbering of thresholds. These constraints are of the form 6; = 8, or
0; < 0, where i is a gene.

Transforming the R. Thomas formalism into discrete dynamics (Fig. 2(c) to
Fig. 2(d)) is achieved by two distinct approaches.

Using the inequality constraints on the kinetic parameters like

kit ico kij kit e, kij
0; < Z}y]G ! or 6; > Z}yje ! (6)

where w C L;, 6; is a threshold of ¢ and, where (kl + Z]Ew k:ij) /i is a
component of a focal point that gives the tendency of the evolution of ¢ with
the ressources w. Both constraints are directly extracted from the PADEs
formalism [7] and provide the discrete parameters values. The number of
these constraints is proportional to the number of kinetic parameters. Both
inequality constraints indicate the localization of the focal point within a
domain. Therefore the number of these constraints is twice the number of
components of focal points.

Using temporal qualitative specification when inequality constraints are
difficult to obtain. Among studies that propose such an approach, two use
the constraints programming. Both approaches chosen the use of reified con-
straints', because the formalism of R. Thomas produces graphs that might
contain domains with multiple successors. The set of constraints are based
on simple inequality constraints on the discrete parameters, which give the
notion of successors. These constraints are usually not sufficient for depict-
ing a unique discrete dynamic but give a set of possible discrete dynamics.
In this purpose, F. Corblin et al. [8] uses constraint logic programming for
analysis of GRN by knowing qualitative pathways or stable qualitative do-
mains (with no out-going transitions). The number of constraints is a linear
function of the number of qualitative domains in the pathway. And, the
number of equations expressing a transition between qualitative domains is
also a linear function of the number of component of the qualitative focal

! by adding boolean parameters such that the parameter is true iff the linked con-
straints are true



points. On the other hand, J. Fromentin et al. [9] uses constraint program-
ming and the CTL language to find the discrete parameters. For example,
we consider the CTL formula z = 0 = EF(x = 1) in Fig. 2(c) to force the
discrete dynamics in Fig. 2(d) in order to have a pathway from z = 0 to
x = 1. For any operator ¢, we associate a Constraint C§* at each discrete
domain s;. In addition for a CTL operator A, we associate a boolean vari-
able B at each discrete domain s;. This boolean variable indicates if the
related discrete domain validates or not the operator constraints. Therefore,
the principle is to propagate the information given by the possible succes-
sors of the discrete domains wvia their reified constraints and their boolean
variables. In this case, the reified constraints are more complex than those
explained in [8] because they must be equivalent to those applied within the
CTL formulae. Nevertheless, the basic constraints for the transitions are the
same: similar equality or inequality constraints on the discrete parameters.
For illustration, we consider the sub-graph of Fig. 2 (c) that includes two
domains s; = (0,0) and sy = (1,0). The application of z =0 = EF(x = 1)
on this sub-graph implies this following decomposition for si:

— o = 0 implies the constraint C;L, = true

— z =1 implies C;1, = false

— EF(z =1) implies Cily ) = Byp(,—) for which

BEF(z:l) LV (BE'ZF(le) N Ky (yy > 0)

—2=0= EF(z=1) implies C7L_ pr,_;) = Cilo = Chpo)
and this decomposition for the domain ss:

— « = 0 implies the constraint C;2, = false

— x =1 implies C;%, = true

— EF(z =1) implies C3p 1) = Biip(,—;) for which
BE‘ZF(;L':I) L,V (BJSElF(le) NEKg yy < 1)
— 2 =0= EF(z=1) implies C72 1 pp,_y) = (310 = C?F(x:n

Note herein that the constraint that satisfies z = 0 = EF(z = 1) in s9 is
a tautology whereras K, ;3 > 0 (i.e. the transition s; — s3) have to be
true for satisfying ::1:0:>EF(m:1)' Thus, and according to [9], the number of
constraints is related to the number of domains and CTL operators.

3 Reasoning on the Biological Constraints Based Model

Biological knowledge is obviously — by nature — incomplete. Only specific behav-
iors related to genes of interest are experimentally investigated. On the other
hand, biological models are often too large and/or complex for using standard
constraints reasoning approaches. Among several solving or analysis techniques,
we propose to use the constraints based framework for refining the model on dis-
tinct biological components, i.e. genes or gene products, in order (i) to validate
a complex model based on specific behaviors, (ii) to emphasize behaviors that
might be experimentally studied.
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Fig. 3. Reasoning on the discrete dynamics given by a result of the constraints-based
protocol where * allow the flux balance analysis.

3.1 Qualitative Behaviors Trimming

Previously shown constraints mainly describe qualitative behaviors. However an-
alyzing such behaviors remains difficult for large gene regulatory networks. The
use of our theoretical framework overcomes in a natural manner this weakness
by allowing us to trim qualitative behaviors using an additional constraints-
based approach: the flux balance analysis using the Minimal Metabolic Behavior
(MMB) technique [10] that is an elegant extension of the Elementary Flux Modes
(EFM) approach (see [11] for flux balance analysis overview). This technique is
already well-known for analyzing the metabolic flux of a balanced (steady-state)
system. It decomposes the flux constraints into minimal elementary pathways.
Combinations of these pathways describe multiple paths that material can follow
through the system. For applying these techniques on discrete dynamics graphs,
we assume (i) a specific qualitative behavior as a combination of qualitative
pathways and (ii) the discrete abstraction depicts transient behaviors between
stable domains which implies flux between initial and stable domains (or set of
domains that produce stable dynamics). Mathematically, the constraints that
describe the discrete dynamics graph have the form:

Sv=0,v;, >0, for i € Irr (M)

where Irr is the set of the transitions (i.e. irreversible transitions), S is the s x m
stoichiometric matrix of the discrete dynamical network, with s domains (rows)
and m transitions (columns), and v € R™ is the flux vector. As explained in
[10], the set of all possible flux distribution through the discrete dynamics graph
at steady state (i.e. all possible solutions of the constraints system described in
(7)), defines a polyhedral cone, named the steady state flux cone.

C={veR™|Sv=0,v;>0,i € Irr} (8)

As illustration, we depict this flux analysis applied on the discrete dynamics
model in Fig. 3(a) that represents the behaviors of the simplistic system in
Fig. 1. Tt is obtained by adding an input transition to the domain (0,0): the
initial domain. We consider as well the stable domain (2,1) as a natural output
of the system that finally consists of nine domains and eight transitions (six



regular plus two added transitions). The steady state cone can be represented
by two minimal proper faces (Fig. 3(b)) named MMB:

MMBllﬁ( ) (7)4>(70)*>(271)*>
MMBs5 : (0,0) — (1,0) — (1,1) — (0,1) — (0,0)

where MMB; and MMB, show respectively a linear and a circular qualitative
pathway that passes through the qualitative domains. Interestingly, these two
pathways represent the two characteristic behaviors of the system. Note that
the lineality space lin.space(C) = {v € C | v; = 0,4 € Irr} has dimension 0 due
to the absence of reversible transitions in the discrete dynamics graph. Such an
approach is particularly helpful for trimming a large biological model. Indeed,
focusing on a specific gene, we consider only the pathways that possess domains
and transitions related to the gene investigated. A linear combination of these
MMBs hence produces a subgraph that describes all qualitative behaviors of
interest.

3.2 Symbolic Model-Checking

The constraint-based protocol shown above is a natural unified theoretical frame-
work for the qualitative modeling approaches. Furthermore, it achieves to com-
bine additional constraints-based techniques usually applied for analyzing meta-
bolic networks. Beyond these qualitative applications, our framework provides
the opportunity to extend the modeling towards quantitative aspects by adding
delays on the discrete transitions, hence producing a hybrid model. Several stud-
ies were done for analyzing hybrid models of genetic regulatory networks: [3,
12-15]. The common assumption is to partition the qualitative domains. This
partition provides a finer transition system such that the sign patterns of the
derivatives of concentrations levels are preserved. The methods for partitioning
differ according to the different works, and the aim for each one is to give raise
to executions that have to be compared with the experimental knowledge. For
this purpose, different kinds of symbolic model checking techniques are applied,
i.e. verify biological temporal properties (e.g. CTL formulae, reachability). It is
either classical model checking ([3,13]) or timed model checking ([14]) or hybrid
(parametric) model checking ([12,15]), and properties are either chronological
([3,13]) or chronometrical ([14,15]). Our constraint-based protocol integrates a
rather different approach [9] since it implements CTL-model checking algorithms
by the mean of constraints programming, which reinforces our unified approach
on biological system modeling.

4 Discussion

This study shows that PADEs and Thomas based approaches are convergent.
Indeed, we emphasize that both formalisms might be expressed using constraints.
In practice, our modeling approach allows to choose between both formalizations
according to the experimental knowledge at disposal, i.e. known constraints on



kinetic or discrete parameters. Moreover, our unified framework achieves a novel
hybrid description of biological systems that exploits the advantages of both
formalisms.

As a natural extension of the biological problem formalization, our unified
framework allows several constraints based analyses that focus on distinct goals.
Comparing our formalization with different solving frameworks (CP, CSP or
SAT solvers [16]) represents by itself an interesting investigation area. How-
ever, we consider that one of the advantages of our approach is to produce a
well-formalized and/or biologically certified problem that might be suitable for
further constraints based investigations.

Our protocol aims at reasoning on more realistic biological networks. As illus-
tration, we applied it on the gene regulatory network of the carbon starvation
response in E. coli formalized using a PADEs system (following the descrip-
tion given in [17]). Six genes compose the gene regulatory network that might
be represented using 37 constraints (constraints on inequalities and thresholds
used in the PADESs system). They produce a discrete dynamics graph with 912
qualitative domains. This problem is hence formalized with simple constraints.
However, although the constraints formalization is a relatively easy task, the
problem remains difficult to analyze with standard techniques due to the com-
plexity of the discrete dynamics graphs. It confirms the interest of dedicated
constraints based techniques for investigating the biological properties of the
complete genes interaction networks.

Acknowledgements D.E. thanks Olivier Bernard for long-term discussions on
the qualitative modeling approaches. The authors alsos thanks Jamil Ahmad for
fruitful discussions during this work.
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Abstract. X-ray crystallography is one of the main methods to establish the
three-dimensional structure of biological macromolecules. In an X-ray experi-
ment, one can measure only the magnitudes of the complex Fourier coefficients
of the electron density distribution under study, but not their phases. The prob-
lem of recovering the lost phases is called the phase problem. Building on earlier
work by Lunin/Urzhumtsev/Bockmayr we describe a constraint-based approach
to the phase problem. We introduce the mathematical foundations, derive a basic
integer programming formulation, and discuss possible refinements by including
additional constraints.

1 Introduction

Knowledge about the three-dimensional structure of biological macromolecules is an
essential foundation of structural biology and biotechnology. In X-ray crystallography
the arrangement of atoms within a crystal is determined from a three-dimensional repre-
sentation of the electron density. From X-ray experiments one gets diffraction data de-
pending on the molecular structure, i.e., the intensities of reflections of X-rays diffracted
by the crystal. X-rays are scattered exclusively by the electrons in the atoms, so one is
searching for a relation between the measured intensities of the beams diffracted at the
object in question and the crystal structure, which can be described by the electron den-
sity distribution. Electron density represents probabilistically where electrons can be
found in the molecule. The first step on the way to estimate a crystal’s electron density
is the collection of crystallographic data. This is done with the help of a diffractometer
or a synchrotron: an X-ray beam is diffracted by the crystal in a discrete set of directions
and the reflection intensities are measured. With the help of this diffraction data and the
usage of mathematical as well as experimental methods, an electron density map can
be derived. Direct methods use mathematical techniques to compute an electron density
map from the diffraction data without any further experiments. The main problem here
is the phase problem: experiments provide only the intensities of the X-rays diffracted
in different directions and so the electron density magnitudes can be calculated, whereas
the information about the phase shift is lost.

Lunin, Urzhumtsev and Bockmayr [2] proposed a 0-1 integer programming approach
to direct phasing. As a research contribution to a crystallographic journal, this article
is not easily accessible. In the present paper, we introduce this work to the constraint
programming community. We describe the mathematical foundations, derive step by



step the basic integer programming formulation, and discuss possible refinements by
including additional constraints.

2 Basic terminology

Vectors, matrices as well as higher-dimensional arrays will be noted with bold letters,
x -y denotes the scalar product of two vectors x and y.

Every crystal consists of identical molecules, resp. complexes of molecules strictly or-
dered in all three dimensions. This means that we can find a parallelepiped containing
such a complex of molecules which builds up the whole crystal if it is repeatedly stacked
together in all three dimensions. This parallelepiped, in general, is not unique. It is de-
fined by the length of its edges as well as the angles between them and is called unit
cell. These base units, translated in three dimensions, build up a crystal lattice.

We will denote the unit cell’s volume with V,.;;. Let by, by, bz € R3 span the unit cell.
Then we can write every vector r € R3 in this basis, i.e., r = z1b; + z3by + z3bs3,
where x = (71,72, 23)T € R? is the vector of coordinates of r with respect to the basis
{b1, by, bs}.

The real function p(r), r € R3, describing the electron density distribution in the
crystal, has three linearly independent periods corresponding to the length of the unit
cell’s edges, i.e., p(r) = p(r + k1 - by + ko - by + k3 - bs), k1, ko, k3 € Z. This means,
if we know the electron density distribution’s values in the unit cell, we know its values
in the whole crystal, due to periodicity.

For the vector of coordinates x = (1, x2, x3) the electron density function has integer
periods in all three directions, i.e. p(x) = p(x +k),Vx € V,Vk € Z3. A vectorr € R?
is inside the unit cell iff x € V = [0,1)3.
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Fig. 1: Unit cells building a crystal: a) a unit cell, b) crystal built of unit cells

3 The phase problem

We are searching for the electron density distribution p(x) over the crystal. Due to the
crystal structure, p is a periodic function and therefore can be developed into a Fourier
series [1,4]

p(x) = Z F(h)exp(—27i(h-x)), x € V. (1)



The Fourier coefficients F(h), h € Z3, which are called structure factors in crystallog-
raphy, are given by the formula

F(h) = /p(x) exp(2mi(h - x))dx. 2)
v

Since the structure factors are complex numbers, they can be written as
F(h) = F(h) exp(ip(h)), 3)

where F'(h) = |F(h)| is the magnitude and ¢(h) € [0, 27| the phase.

The only experimental data we get in X-ray-crystallography are the reflection intensi-
ties. The intensity 7(h) of a reflection is proportional to the magnitude of the squared
structure factors, with a known constant of proportionality,i.e.,C-1(h) = |F(h)|?,C €
R. Thus, all we can calculate from our experimental data are the structure factor magni-
tudes. The phase information is lost and must be restored by other means. This is called
the phase problem.

4 The electron density distribution on a grid

4.1 Grid electron density

Instead of calculating the electron density distribution in the whole unit cell, we will
work on a grid. Using discrete Fourier transforms we will then calculate electron den-
sities at the grid points. The chosen division numbers along the unit-cell axes represent
the resolution of the electron density map we are searching for.
Consider a grid IT = [0, M; — 1] x [0, My — 1] x [0, M3 — 1] C Z3, where M =
M1 My Ms is the total number of grid points. Let M be the diagonal matrix M =
diag(M., M2, Ms), My, Ma, M3 € N. Given the values y; of a periodic function f on
the grid points j, i.e.,

%= GG ) A= Gnids) el o
the three dimensional discrete Fourier transform F calculates the Fourier coefficients
of a trigonometric polynomial interpolating f in these grid points [6]:

1 . 1.
F(h) = MZyjexp(Qm(h~M 5)), Vh e II. Q)
jeIl
The values yj, j € I, can be recovered from the Fourier coefficients F(h), h € II, by

the inverse discrete Fourier transform:

yi= Y F(h)exp(—2mi(h-M"j)), Vj € IT. (©6)
hell



(a) Protein (b) Discretisation
Fig.2: Discretisation of a protein: a) Protein, b) Protein discretisation

The values of the electron density function p(x), x € V at the grid points are described
by the grid electron density function py(j) = p(M~1j). We define the grid structure
factor F 4(h) by the discrete Fourier transform

1 . . 1.
Fy(h) = 52> peli) exp(2mi(h - M~1j)), Vh € II. (7)
jenn
If we know the grid structure factors, we can restore the grid electron densities
pg(3) =Y Fy(h)exp(—2mi(h-M™'j)), Vj € 11, 8)
helr

using the inverse discrete Fourier transform.

4.2 Structure factors vs. grid structure factors

In order to clarify the relation between the structure factors and the grid structure fac-
tors, we start with equation (7) and use (1), see also [5]:

Vee 1, . 1,
VeenFg(h) = ]‘;4” p(M™j) exp(2mi(h - M™j))
jen

=SS F(p) exp(—2i(p - (M) - exp(2mi(h - M)
JeIl pez3

= LS Fo) Y exp2ril(h - p) - M) = 3 Fh+ M)

pEZ3 Jjelr kez3

The last equation holds due to

) 1. M, ifh — p = Mk, fork € Z3
Z CXP (2772 ((h -p)-M 1‘])) - {0, otherwise.
jen



Introducing R(h) = F(h + Mk) we can write

cell yeza\ {0}

F(h) R(h)
Veeur * M ©

Fg (h) =

The value of R(h) depends on the magnitudes and phases of all structure factors and is
generally unknown. But, it may be negligibly small if the grid is fine enough and if the

indexes h are relatively small in comparison with the grid dimensions. Still, it may be

My M- M.
significant if one of the indices is close to 71, 72 or 73 ,cf. [2].

4.3 Inequalities for the grid electron density values

Using (7) we can obtain grid density values p,4(j) from the grid structure factors F ,(h)
by solving the system of equations

1
Fy(h) = -2 pg(j) exp(2mi(h-M™j)), Yh € II. (10)
jenr

This equation system would be linear in pg(j) if the grid structure factors were known.
Next we use (9) to relate the unknown grid structure factors F4(h) to the true structure
factors F'(h), whose magnitude can be observed in the X-ray experiment. Given an
upper bound |R(h)| < e1(h), Vh € IT, we get the following system of inequalities for
the grid density function:

M
Veenl

|3 pu0) explzri(h- M) -
jel1

F(h)| <ey(h), Vhe IT (11)

5 Recovering the phases

We will now deduce further constraints restricting the possible phases of the structure
factors F'(h). Here, we have to distinguish between centric and acentric reflections.

5.1 Symmetries

We say that the density distribution p(x) displays the symmetries of a space group

I'={(R,,t,)}.2%", nsym € N, with R,, being a rotation matrix and t,, a translation

vector if the following holds [9]:
p(Ryx+t,) = p(x),¥x € R®*, Vv € {1,...,ngym} (12)
From (12) and (2) we can derive the following symmetries for the structure factors [8]:
F(h) = exp(2mi(h-t,)) F(RLh), Vh € II,Vv € {1,...,ngym}.  (13)

If th = —h for some v, h is called centric reflection, otherwise it is called acentric.



5.2 Centric reflections

Using (13) and the Hermitian symmetry F(—h) = F(h) of the structure factors, we
obtain the following phase restrictions for centric reflections:

if RTh = —h then ¢(h) = ¢(h) or ¢(h) = (h) + 7 with ¢»(h) = 7(h - t,). (14)

So, if the reflection is centric, only two values of the phase, ¢(h) or ¢(h) + 7, with
¥(h) being known, are possible. Thus, we can introduce a new variable a(h) € {0, 1},
representing the phase ambiguity. In our inequality system (11), we can replace F(h):

F(h) = F(h) exp(ip(h)) = F(h)(2a(h) — 1) exp(itp(h)). (15)

Taking real and imaginary parts, this results in the following inequalities for centric
reflections h € II:

|3 cos(2n(h - M~§))p, §) — (20(h) ~ 1)

F(h) cos ¢ (h)| < &1(h), (16)

e Veer
| S sin(2n(h - M 19)p,(3) ~ (2a(h) — ) F(W)sing(h)| < e1(h). 17)
jEH ce.

Thus the inequalities become linear in p,(j) and a(h) if the structure factor magnitudes
F(h) are known.

5.3 Acentric reflections

For the acentric reflections, the phase can take any value from 0 to 2. [2] suggests

for this case to restrict the phase of the structure factor to one of four possible values

3
:l:%, j:%. Introducing two new variables a(h), G(h) € {0, 1} and taking the real and
imaginary part leads to the following inequalities for acentric reflections h € IT:

|3 cosnn- Mg, () — (20(0) — V()| < <), (19
jeI ce
|3 sinCm(h- MC)py ) — (2608) ~ 1) 2= Fh) 5] < e, (19
jerr ce

The error £(h) is given by e(h) = e1(h) + £2(h). Here £2(h), introduced by the

1 M
< — F(h).
_\/ivcell ()

sampling of the phase value can be estimated by 2 (h)

6 Constraint-based modeling of the phase problem

6.1 Constraint system

In the context of direct phasing, it may be sufficient to find a binary envelope of the
regarded molecules, i.e., a binary function representing areas where the electron density



is above a certain level [2]. Using this idea, we may replace the unknowns p,(j) by
binary variables z; € {0, 1}, for each grid point j € II. The value of z; should be 1 if
the electron density p,4(j) is above a certain level and 0 otherwise, so the solution of the
problem provides a binary envelope of the regarded molecules.

We end up with a system of linear inequalities in O-1 variables for representing the
electron density values at grid points. We use the following notations (the superscripts
R and I stand for the real and imaginary part resp.)

ai*(h) = cos(2r(h - M™'j)), af (h) = sin(2w(h - M™j)), (20)

For centric reflections, we set

U = yn = a(h), 1)
b = 25 F(h) cosy(h), b, = 2xF(h)sine(h), (22)
et = kF(h) cos(h), ¢ = xF(h)sinvy(h), (23)

and for acentric reflections

ui = a(h), yi = B(h), (24)
b = 2kF(h)27Y2, bl = 26F(h)271/2, (25)
At = kF(M)27Y2, ¢l = kF(h)271/2. (26)

Here x > 0 is a scaling factor reflecting that the magnitudes F°*¢(h) we get from the
analysis of the diffraction pattern correspond to a real electron density distribution, and
not to a binary one [2].

To further simplify, we will write

Af(h,z,y(h) = ) aft(h)z — (bl — ), @7
jen

Al(h,z,y(h) =Y af(h)z — (bhyn — ch) - (28)
jen

Then our binary variables z;, ¥, yi, with j, h € IT have to satisfy
|A%(h,z,y(h))| < e and |A' (h,z,y(h))| < en, Vh € I, (29)

where e}, = €1 (h) for centric and e, = £(h) for acentric reflections.

6.2 Objective function

One possibility to work with the inequality system (29) is to apply a penalty method.
Whenever | A% (h,z,y(h))| > epn, we include | A% (h, z, y(h))| as a penalty term, sim-
ilarly for | A’ (h, z, y(h))|. This can be modelled as a mixed-integer optimisation prob-
lem with the help of additional variables r{¥, {, h € IT representing the penalties:



min Z (rf + ) (30)

hell
subject to 0<r 0<rl, VYhell (31)
—Eh — rllf” < AR(h,z,y(h)) <ep+ 7‘5”, Vh € II, (32)
—en — 71 < A'(h,z,y(h)) <ep+ri, Vhell (33)
zi, i,y € {0,1}, Vh,je Il (34)

7 Ongoing and further work

In this paper, we have described for a constraint programming audience the basics of our
constraint-based approach to the phase problem in X-ray crystallography. Preliminary
computational experiments and a crystallographic discussion of the results can be found
in [2]. In this earlier work, we used the local search pseudo-Boolean solver WSATOIP
[7], which was efficient only for a very small grid size (6 X 6 % 6 or 8 x 8§ x 8). To increase
performance, we are currently experimenting with state-of-the-art integer programming
and pseudo-Boolean solvers that have been developed in recent years.

Another line of research consists in modeling different geometric properties of crystals.
This results in new constraints which can be added to the model, in order to increase
the quality of the solutions. One such constraint is the connectivity constraint stating
that the number of connected components in the binary envelope has to be less or equal
to the number of molecules in the unit cell [3]. A corresponding integer programming
formulation has been developed and is currently being tested.
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Abstract. We propose a methodology to design gene regulatory networks with
targeted dynamics based on combinatorial optimisation that poses new
challenges for constraints programming. We use genetic programming
techniques to evolve from scratch a transcriptional circuit with unconstrained
number of genes that works as a logic gate or as an oscillator. Our circuits are
defined by a set of non-linear differential equations describing the protein
concentrations. At each evolutive step we could add or remove a concentration
and its corresponding differential equation. This corresponds to adding or
removing a gene. We can also modify the functional form of a differential
equation or modify some kinetic parameter. This corresponds to mutation
events in the regulatory or coding sequence. We define as the scoring function
the distance between the circuit dynamics and the targeted behaviour We
explore the space of all possible transcriptional regulation networks, where at
each step we would add/subtract new interactions or modify kinetic parameters,
to find the optimal circuit with specified system behaviour. We apply our
methodology to the design of genetic devices having a desired switching or
oscillatory behaviour. Our circuits could be constructed experimentally by
assembling biological parts with appropriate kinetic properties. This is not
possible in general and the designer, who will only have a small set of available
biological parts, will be forced to evolve some of its parts. This introduces a
parameter range for each part that it will propagate into an evolvability range
for each designed circuit. Those ranges are best described by using constraints
and the evolution process could implement model-checking prior to the
evaluation of the dynamics.

Keywords: Biological Systems, Regulatory Networks, Genetic Programming,
Combinatorial Optimisation.



1 Introduction

One of the most intriguing aspects of networks of complex systems is their temporal
dynamics. Very often in complex systems the dynamics does not follow from the
network topology. Among the chief examples of complex networks are the genetic
transcription networks. The study of those networks has important applications in
understanding the circuitry of living systems. There has been a tremendous work on
elucidating the network topology of transcription networks [1]. Studies of recurrent
network motifs showed that their dynamics could provide useful functions [2,3].
These reverse-engineering studies are very useful to plan the forward-engineering of
synthetic circuits. The new development of standardized genetic parts [4] will allow
designing much complex networks in a modular way according to some specifications
by the assembly of those parts. Usually genetic parts are taken from wild-type
organisms. Nevertheless, some experimental work has been performed on building
synthetic parts such as promoters with altered operator sites [5,6,7], modified
ribosome binding sites [8], or codon-optimized coding regions [9]. The de novo
design of protein has engineered new coding regions with specified functions and
sometimes they have no similarity with any natural sequence [10,11,12]. In addition,
most synthetic promoters are regulated by a single transcription factor, but there has
also been some work on the design of promoters regulated by two transcription
factors [13,14].

The design of artificial genetic networks [15,16,17] has boosted the emerging field
of synthetic biology [18]. Still most of the work has been done using rational design
techniques, limiting the computational facilities to the solving of dynamical
equations. It would be extremely useful to be able to use computational methods to
aid in the optimization and design of new circuits. For instance, we could use a
catalogue of genetic circuits with optimized transfer functions as educated guesses to
aid in the design of a given genetic circuit. Previous work has already used
evolutionary methods to design circuits able to oscillate, although they were
composed of electronic components [19]. Another work [20] did focus on biological
networks, using protein species and a post-translational regulation to design several
types of circuits, although this type of regulation is difficult to implement
experimentally. Here, we propose to address transcriptional regulatory interactions,
neglecting post-translation regulations, to implement genetic networks that could
eventually be synthesized.

Our computational algorithm (Genetdes) searches the space of artificial genetic
networks to find the optimal circuits with a targeted temporal behaviour [21]. During
our simulation, we add or subtract genes, change kinetic constants or the operator-
binding logic function at promoters. Each generated circuit is evolved in time and we
use the average deviation to an expected temporal function as scoring function. We
use Monte Carlo Simulated Annealing [22] method to do the optimization in the space
of all possible genetic circuits. Our circuits could be constructed experimentally by
assembling biological parts with appropriate kinetic properties. This is not possible in
general and the designer, who will only have a small set of available biological parts,
will be forced to evolve some of her parts. This introduces a parameter range for each
part that it will propagate into an evolvability range for each designed circuit. Those



ranges are best described by using constraints and the evolution process could
implement model-checking prior to the evaluation of the dynamics.

2 Methods
2.1. Mathematical model

The dynamics of transcriptional regulatory networks can be depicted by systems of
nonlinear first-order ordinary differential equations. We have considered an effective
model of protein concentrations for the transcriptional regulations. The dynamics of a
transcription factor concentration (Y1) follows the differential equation

dYil/dt = o R; - B; [Yi] + 71, €))

where o; is the transcription-translation rate of gene i, B; the corresponding
degradation rate, and v; the basal rate. The function R; defines the regulatory factor for
the promoter of gene i, defined by

R; = V(1Y /K™, @

where Kj; is the regulatory coefficient and nj is the Hill coefficient (chosen positive
for repressions and negative for activations) for the transcription factor j.

2.2. Fitness function

We compute the fitness function as the deviation of the circuit dynamics (y) respect
to the targeted dynamics (z) as

J=[ly-zlydt, 3)

where Y is a weighting factor used to only compute a region of interest (e.g., to avoid
transients or to impose an oscillatory dynamics). In that way, we construct a
minimization problem, where we evolve networks to behave close to the specified
dynamics (z).

We use several transfer functions to specify the target behaviour. Each transfer
function gives the behaviour of the system for a given input state. In that way, four
transfer functions are required to design a circuit working as a logic gate of two
inputs, as there are four entries in the corresponding truth table. On the other hand, to
design an autonomous oscillator we need just one transfer function. Therefore, for



each transfer function we compute the fitness of the system, and the global fitness
function is the sum of all them.

However, the landscape proposed by that fitness function has not large biological
referents as these systems have to be robust as well as functional. Thus, we extend the
fitness function to

F=(1-0JT+rJ), @)

where J is the fitness function given by the equation 3, J’ is a new term to count the
robustness of the system and r is the degree of robustness for our design. In this work
we just study the robustness under parameter perturbations. However, further works
will study the robustness under topological perturbations, which will give important
issues for understanding the evolution of biological systems. Therefore, we compute
J’ as the average value of all fitness functions (here we compute 10) after perturbing
randomly all the model parameters.

2.3. Optimization procedure

We use Monte Carlo Simulated Annealing [22] to optimize transcription circuits in
the space of topologies and parameters. We define a mutation operator to evolve the
circuit. This operator consists of two moves, both with a probability of occurrence.
The first move is in the parameter space. We select randomly a parameter of the
model and we perturb it within the corresponding range of values. The second move
is in the topology space. There are five possibilities: (i) change the logic function of a
binary promoter, (ii) add a new regulation, (iii) remove a regulation, (iv) add a new
gene in the circuit or (v) remove a gene from the circuit. We can specify the
probabilities to do these moves according to our design purposes. In addition, for
convergence purposes, the probability to do a parameter move is taken much higher
than the one to do a topology move (e.g., 0.99). In that way, for each evolved
topology we explore the parameter space.

In case of no initial network specification, we start from a disconnected circuit
where the number of genes of the circuit is equal to the number of inputs plus the
number of outputs. We take a Metropolis criterion to accept a mutation, using an
exponential cooling scheme. As each mutation only involves a small change in the
network it could be possible to obtain an analytical approximation to the dynamics.
This would speed up our methodology in at least one order of magnitude.

3 Design of small networks

We have applied our methodology to design genetic devices implementing a given
behaviour. We focus in designing small functional modules, which could later be
assembled arriving to large and sophisticated networks. We have targeted digital
behaviours. Our devices consist on genetic circuits having the concentration of two
and one transcription factors as input and output respectively. We have targeted AND,



OR, NAND and NOR gates, and in Fig. 1 we show the designed circuit with AND
behaviour. ul and u2 are the input transcription factors and y is the output
corresponding to the concentration of a gene product. To compute the objective
function we have averaged the score obtained with each transfer function
corresponding to every entry of the truth table. We have evaluated the score by
computing (3) during 100 minutes, which provides one order of magnitude more time
that the transient needed to attain the steady state. We have computed a score for
transfer function and we have averaged it. However, for visualization purposes, we
have plotted a temporal dynamics where the input transcription factors concentrations
ul and u2 take all possible Boolean values of a two-input truth table. Inputs can be
activators or repressors according to the chosen promoter during the simulation.

ul

=  y=ul ANDuU2
ul 1 Y 2
£ — = p—
B Clime (minh r_l""-_—-x‘-" I- — '_lg i
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E u2 . - T = 0% 1: i
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Fig. 1. Transcriptional network composed of three genes (a, b and c) designed to behave as an
AND gate. On the left, time evolution of transcription factor inductors ul and u2 corresponding
to (ul, u2)=(0, 0), (0, 1), (1, 0) and (1, 1) for times 0-100, 100-200, 200-300 and 300-400
minutes respectively. On the centre, the circuit obtained with our methodology. On the right,
the network dynamics (solid line) superimposed to the targeted behaviour (dashed line).

We have also designed circuits showing an oscillatory behaviour. Towards this
end, we have targeted a sinusoidal function. We have considered a weighting factor to
compute the score such that it was 1 only in the neighbourhood of a maximum or
minimum of the targeted sinusoidal function. This was done to improve the
convergence. Fig. 2 shows the optimal genetic network and its time behaviour. We
plot as a dashed line the targeted sinusoidal function and as a solid line the
corresponding time evolution of the output gene expression. This forward engineering
approach has allowed us to design a large set of oscillators and to study evolutionary
principles on natural occurring circadian clocks [23]. In addition, we have studied the
behaviour of such networks when forcing with external cyclic stimuli at different
periods [24].
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Fig. 2. Transcriptional network designed to show an oscillatory behaviour. The dashed line on
the right plot denotes the targeted dynamics.

It is not possible to estimate the complexity of our evolution because it depends on
a heuristic optimization process, which will change for each system analyzed. the
search throughout the space of genetic networks. Our algorithm writes and reads in
SBML level 2 [25], which allows to interface it with a large number of other software.
In the species definition, if the specie is an input then its boundary condition will be
set to true (false otherwise). Each reaction (transcription-translation) has 1 product
and at most 2 reactants. To describe this we need the corresponding kinetic
parameters and two additional variables specifying the logical function at the
promoter and whether a gene is considered a reporter.
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Fig. 3. Scheme showing the flux of Genetdes.



Fig. 4. Example of a design of a complex system using simple functional devices.

4 Discussion

One question to address, from a systems/synthetic biology point of view, is
whether natural genetic networks are understandable as systems of devices. Have
natural circuits a selective pressure for a given network motif or for a given function?
If there could exist a selective pressure for given network modules behaviour, then
some circuits within a module could get rewired by evolution while maintaining their
functionality. For instance, it could be that some AND circuits would occasionally
appear in evolution substituted by another AND circuit. On the other hand, natural
gene circuits may not rely on functional modules, but on a complex intertwined
network of interactions, as it usually happens with evolutionary design. In this later
case, maybe the only way to design a system of devices would be by using an
evolutionary design procedure. We could then use directed evolution of gene circuits
or in a combination with a computational procedure. In that way, in further work we
will expand our methodology to design systems with complex behaviours from a
library of functional devices (see Fig. 4).

The implementation of a circuit in a given cellular context usually requires a
constant fine-tuning of the model to obtain a successful prototype. In that way, the
fact of having a repository of already characterized parts is very useful when
implementing a circuit. Therefore, we have developed a software (Asmparts) to
assemble part models to construct large systems [26]. We have combined Asmparts
with Genetdes to construct and optimize genetic networks.
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Abstract. Siegel and colleagues recently proposed a principled definition of con-
sistency between biochemical/genetic reactions and high-throughput profiles of
cell activity. Following this work, we present an approach based on Answer Set
Programming to check the consistency of large-scale datasets. Furthermore, we
extend this approach to provide explanations for inconsistencies in the data, by
determining minimal representations of conflicts. In practice, this can be used to
identify unreliable data or missing reactions.
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1 Introduction

This paper deals with the analysis of high-throughput measurements in molecular bi-
ology, like microarray data or metabolic profiles [1]. Up to now, it is still a common
practice to use expression profiles merely for detecting over- or under-expressed genes
in a given condition, leaving to human experts the task of making biological sense out of
tens of gene identifiers. However, many efforts have also been made these years to make
a better use of high-throughput data, in particular, by integrating them into large-scale
models of transcriptional regulation or metabolic processes [2,3].

One possible approach consists in investigating the compatibility between the exper-
imental measurements and the knowledge that is available in reaction databases. This
can be done by using formal frameworks, for instance, those developed in [4] and [5]. A
crucial feature of this methodology is its ability to cope with qualitative knowledge (for
instance, reactions lacking kinetic details) and noisy data. In this work, we rely on the
model by Siegel and colleagues [4], later on referred to as the Sign Consistency Model
(SCM for short), for developing declarative techniques based on Answer Set Program-
ming (ASP for short) [6] to detect and explain inconsistencies in large datasets.

The SCM imposes constraints between experimental measurements and a graph
representation of cellular interactions, named an influence (or interaction) graph [7].
These constraints, later on referred to as sign consistency constraints, are described in
Section 2. Section 3 provides an intuitive introduction to ASP, a logic-programming
paradigm popular due to its declarativeness. In Section 4, we develop an ASP formu-
lation of checking the consistency between experimental profiles and influence graphs.
We further extend this approach in Section 5 to identifying minimal representations
of conflicts if the experimental data is inconsistent with an influence graph. For both
problems, we report preliminary experimental results on randomly generated instances.



Section 6 concludes this paper with a brief discussion and an outlook on future progres-
sion.

2 Influence Graphs and Sign Consistency Constraints

Influence graphs [7] (also called interaction graphs in the literature) are a common
representation for a wide class of dynamical systems. Basically, an influence graph is a
directed graph whose vertices are the input and state variables of a system and whose
edges express the effect of variables on each other. Informally, an edge j — ¢ means
that the rate of variation of j in time influences the level of ¢. Each edge j — ¢ of an
influence graph is labeled with a sign, either + or —, denoted by o (7, 7). Sign + (resp., —)
indicates that j tends to increase (resp., decrease) 7. An example of influence graph is
given in Fig. 1; it represents a simplified model for the operon lactose in E. coli.

L; Lacl cAMP-CRP

\/1

LacZ

Fig. 1. Simplified model of operon lactose in E. coli, represented as an influence graph. The
vertices represent either genes, metabolites or proteins, while the edges indicate the regulations
among them. Green arrows with normal head stand for positive regulations (activations) while
red arrows with tee heads stand for negative regulations (inhibitions). Vertices G and L. are
considered to be inputs of the system, that is they are unconstrained.

In the field of genetic networks, influence graphs have been investigated under var-
ious classes of dynamical systems — from ordinary differential equations [8], to syn-
chronous [9] and asynchronous [10] Boolean networks. Influence graph have also been
introduced in the field of qualitative reasoning [11], to describe physical systems where
a detailed quantitative description is not available. This has been the main motivation
for using influence graphs for knowledge representation in the context of biological
systems.

In the SCM, experimental profiles are supposed to come from steady state shift ex-
periments where, initially, the system is at steady state, then perturbed using control pa-



rameters, and eventually, it settles into another steady state (after a while). It is assumed
that the data measures the differences between the initial and the final state. Thus, for
each gene, protein, or metabolite, we know whether its concentration has increased or
decreased, while quantitative values are unavailable, unessential, or unreliable. By p(¢),
we denote the sign, again + or —, of the variation of a species ¢ between the initial and
the final condition. One can easily enhance this setting by also considering null (or more
precisely, non-significant) variations, by exploiting the concept of sign algebra [11].
We above introduced influence graphs (as a representation of cellular interactions)
and labelings of their vertices with signs (as a representation of experimental profiles).
We now describe the constraints that relate both. Informally, for any vertex ¢, the ob-
served variation p(i) should be explained by the influence of at least one predeces-
sor j of 7 in the influence graph. Thereby, the influence of j on i is given by the sign
w(§)o(j, i) € {+,—}, where the multiplication of signs is derived from the multiplica-
tion on real numbers. Sign consistency constraints can then be formalized as follows.

Definition 1 (sign consistency constraints). Ler (V, E, o) be an influence graph, where
V is the set of vertices, E the set of edges, and o : E — {+,=} a labeling of the edges.
Furthermore, let 11 : V' — {+,=} be a vertex labeling. Then, for anyi € V, the sign (i)
of i is consistent, if there is some edge j — i in E such that 1(i) = p(j)o(j,4).

Table 1 shows four different vertex labelings of the influence graph given in Fig. 1.
The labeling ;7 is consistent with the influence graph: the variation of each vertex
(apart from the inputs G, and L., see Fig. 1) can be explained by the effect of one of
its regulators. For instance LacY receives one positive influence from cAMP-CRP, and
one negative influence from Lacl, which accounts for the variation of LacY. The second
labeling, po is not consistent: this time LacY receives only negative influences from
cAMP-CRP and Lacl and its variation cannot be explained.

Species|Le L; G LacY LacZ Lacl A cAMP-CRP
J251 - - = - - + - +
p2 |+ + - 4+ -+ - -
us |+ ? = ? ?2 0 0+ ? ?
pna |22 = + 2 ? +

Table 1. Some labelings for the influence graph depicted in Fig. 1.

The notion of (sign) consistency is extended to whole influence graphs in the nat-
ural way, requiring the sign of each vertex to be consistent. Furthermore, in practice,
influence graphs and experimental profiles are likely to be partial. Thus, we say that a
partial labeling of the vertices is consistent with a partially labeled influence graph, if
there is some consistent extension of vertex and edge labelings to all vertices and edges.
For instance, vertex labeling pi3 is consistent with the influence graph given in Fig. 1, as
setting the signs +, —, —, —, + to L;, LacY, LacZ, A and cAMP-CRP respectively extends
W3 in a consistent labeling. On the other hand, ;14 cannot be consistently extended.



3 Answer Set Programming

This section provides a brief, informal introduction to ASP (see [6] for formal details).
ASP is an attractive declarative paradigm for knowledge representation and reasoning,
offering a rich modeling language [12,13] along with highly efficient inference engines
based on Boolean constraint solving technology [14,15,16]. The basic idea of ASP is to
encode a problem as a logic program such that its answer sets represent solutions.

In view of our application, we take advantage of the elevated expressiveness of dis-
junctive programs, being able to capture problems at the second level of the polynomial
hierarchy [17]. A disjunctive logic program is a finite set of rules of the form

ay;...;a; <= bip1, ..., by, not ¢y, ..., N0t Cpy €))

where a;,b;, ¢, are atoms for 0 < <l <j<m<k<mn.Aruler asin (1) is called a
fact, if | =n =1, and an integrity constraint, if | = 0. Intuitively, a rule amounts to an
implication, with ‘,” standing for ‘A’ and *;’ for *V’; however, standard transformations
valid in classical logic, e.g., contraposition, are not valid under the answer set semantics.
In fact, the answer sets of a program are particular classical models of the program
satisfying a certain stability criterion (cf. [6]). Roughly, a set X of atoms is an answer
set of a program, if for each program rule of form (1), X contains a minimum number of
atoms among a1, ..., a; when byy1,...,b,, belong to X and no ¢, 41, ..., c, belongs
to X. However, note that the disjunction in heads of rules, in general, is not exclusive.

Though answer sets are usually defined on ground (i.e., variable-free) programs,
the elegance of ASP comes from the possibility to provide non-ground problem en-
codings, where schematic rules amount to their ground instantiations. Grounders, like
Iparse [13], are capable of combining a problem encoding and an instance (typically
a set of ground facts) into an equivalent ground program, which is then processed by
some ASP solver. We follow this methodology and provide encodings for the problems
considered below.

4 Checking Consistency

We now come to the first main question addressed in this paper, namely, how to check
whether an experimental profile is consistent with a given influence graph. Note that, if
the profile provides us with a sign for each vertex of the influence graph, the task can
be accomplished in polynomial time. However, as soon as the experimental profile has
missing values (which is very likely in practice), the problem becomes NP-hard [18].

Here, we present an encoding of the problem as a logic program such that each of its
answer sets matches a consistent extension of vertex and edge labelings. Our program
is composed of three parts, which we describe next.

Problem Instance The influence graph as well as the profile are given by ground facts.
For each species ¢, we introduce a fact vertex(i), and for each edge j — i, a fact
edge(j,i). Furthermore, if the variation s (either + or —) of a species i is given in the
profile, it is modeled by a fact obs_viabel(i,t), where t=p if s=+ and t =n if s=—,
and if the sign s of an edge j — ¢ is known, it is expressed by a fact obs_elabel(j ,i,t).



Generating Solution Candidates As stated above, our goal is to check whether an
experimental profile is consistent with an influence graph. If so, it is witnessed by total
labelings of the vertices and edges, which are generated via the following rules:

viabel(V,p) ; viabel(Vn) «— vertex(V) , @)
elabel(U,V,p) ; elabel(UV,n) «— edge(U,V) .

Moreover, the following rules ensure that known labels are respected by total labelings:

viabel(V,S) «— obs_viabel(V,S) , 3)
elabel(U,V,S) «— obs_elabel(U,V.S) .

Note that the stability criterion for answer sets implies that a known label derived via
rules in (3) is also derived via rules in (2), thus, excluding the opposite label.

Testing Solution Candidates Finally, we check whether the generated total labelings
satisfy the sign consistency constraints stated in Definition 1, stipulating an influence
of sign s for each vertex ¢ with variation s. We thus define infl(4s) to indicate that i
receives an influence of sign s, where the encoding contains facts sign(p) and sign(n):

infl(V,p) «— edge(U,V), elabel(U,V,S), viabel(U,S), sign(S) , @
infl(Vyn) «— edge(U,V), elabel(U,V,S), viabel(U,T), sign(S), sign(T), S # T .

Inconsistent labelings are then ruled out by integrity constraints of the following form:

— vertex(V'),viabel(V,S), sign(S), not infl(V,S) . 5)

Benchmarks We assessed the efficiency of our approach on artificially generated in-
stances. Each instance is composed of a graph, a complete labeling of its edges with
signs, and a partial labeling of its vertices. Our random generator of instances has three
parameters: the number of vertices in the influence graph n, the average degree in the
graph 3 and the proportion of observed nodes . To generate one instance, we compute
a random graph under the model by Erd8s-Rényi [19], where each pair of vertices has
equal probability to be an edge. The parameter 3 is fixed to 2.5, and varying between
2 and 3 (which are usual values in biological networks [20]) does not change the re-
sults significantly (data not shown). The labels on edges are chosen independently with
probability % for each sign. Then |yn| vertices are chosen with uniform probability,
and assigned a label with probability % for each sign.

The instances were solved using the grounder Iparse [13] and the solver cmod-
els [21]. These programs were run on an Intel Core 2 Duo 2.4 GHz processor, with
4GB of memory under Linux. All reported times correspond to Unix user time.

The results are presented in Fig. 2: we separated execution time into grounding time
and solving time to show their relative contribution. The grounding stage transforms the
original logic program into an equivalent variable-free program. This step is required
because only ground programs can be solved efficiently in practice. Both graphics dis-
play the time needed for the corresponding phase as a function of the number of vertices
in the instance. For each size, we generate 50 instances distributed in 5 groups having a

101 1 1

. .. 1 1 1 1
different v value (here: 155 555 357 26° 10)-
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Fig. 2. Execution time for checking the consistency of an influence graph with an expression
profile. The execution time is separated into its two contributions, namely grounding (on the left
hand) and actual solving (on the right hand).

Grounding time increases linearly with the size of the instance, and does not vary
significantly for instances of equal size. Solving time also increases linearly with the
size of the instance, though in a more sophisticated way: for a given size of the in-
stances, one can distinguish two clusters of instances having well-separated solving
time. Interestingly, all “easy” instances are inconsistent (or equivalently, all instances
which are consistent are in the “hard” cluster). Now for each one of these two types of
instances, the solving time grows linearly with the size of the instance.

From these results, we can see that checking consistency on data of realistic size
(i.e. influence graphs of several thousands of vertices) takes no more than a couple of
seconds on a standard PC.

5 Identifying Minimal Inconsistent Cores

Once it is proved that an experimental profile is inconsistent with a given influence
graph (i.e., if the logic program given in the previous section has no answer set), due to
the amount of data, it is crucial to provide explanations that are as concise as possible.
Here, we adopt a strategy that was successfully applied on real biological data in [22],
where the basic idea is to isolate minimal subgraphs of an influence graph such that the
vertices and edges cannot be labeled in a consistent way. This task is closely related to
extracting Minimal Unsatisfiable Cores (MUCs) [23] in the context of Boolean Satisfia-
bility (SAT) [14]. In allusion, we call a minimal subgraph of the influence graph whose
vertices and edges cannot be labeled consistently a Minimal Inconsistent Core (MIC).
As in the previous section, we present a disjunctive program such that its answer
sets match MICs. We assume that a problem instance, that is, an influence graph along
with an experimental profile, is represented by facts as specified in Section 4. The re-
mainder of the logic program is the problem encoding, consisting of three parts: the first
generating MIC candidates, the second asserting inconsistency, and the third verifying
minimality. Thereby, the generating part comprises the rules in (2) and (3) as well as:

active(V') ; inactive(V') « vertex(V) .



The purpose of this additional rule is to permit guessing a set of vertices to be marked
as active. The subgraph of the influence graph induced by the active vertices forms a
MIC candidate, which is tested via the two encoding parts described next.

Testing for Inconsistency By adapting a methodology used in [24], the following
subprogram makes sure that the active vertices belong to a subgraph that cannot be
labeled consistently, taking into account all labelings of the residual vertices and edges:

op(U,V') «— active(V'), viabel(V,n), edge(U,V), elabel(U,V,S), viabel(U,S), sign(S) ,
op(U,V) — active(V'), viabel(V.p), edge(U,V ), elabel(U,V.S), viabel(U,T'), sign(S),
sign(T), S # T,
bottom «— active(V'), vertex(V'),op(UV) : edge(UV) ,}
«— not bottom ,
viabel(V,S) «— bottom, vertex(V'), sign(S) ,
elabel(U,V,S) — bottom, edge(U,V'), sign(S) .

In this (part of the) encoding, op(U,V) indicates that the influence of vertex U on active
vertex V' is opposite to the variation of V. If all regulators of V' have such an opposite
influence, the sign consistency constraint for V' is violated. In this case, atom bottom
is produced, along with all labels for vertices and edges. Here, the stability criterion
for an answer set X imposes that bottom and all labels can only belong to X if the
given problem instance does not permit consistent labelings. Finally, integrity constraint
«—not bottom necessitates the inclusion of bottom in any answer set, thus, stipulating
an inevitable violation of the sign consistency constraint for some vertex that is active.

Testing for Minimality The second test is based on the idea that, picking any active
vertex, the sign consistency constraints for all other active vertices should be satisfied
by appropriate labelings. This conception is implemented in the following subprogram:

vilabel’(W,V,p) ; vlabel’(W,V,n) «— active(W), vertex(W), vertex(V) ,
elabel’(W,U,V.p) ; elabel’(W,U,V,n) «— active(W), vertex(W), edge(U,V') ,
vlabel’(W,V,S) «— active(W), vertex(W), obs_vlabel(V,S) ,
elabel’(W,U,V.,S) «— active(W), vertex(W'), obs_elabel(U,V,S) ,
infl'(W,V,p) <« active(W ), vertex(W), active(V'),V # W, edge(U,V),
elabel’(W,U,V.S), vlabel’(W,U,S), sign(5) ,
infl'(W,Vin) «— active(W),vertex(W), active(V'),V # W, edge(U,V),
elabel’(W,UV,S), viabel’(W,UT), sign(S), sign(T),S # T,
— active(W), vertex(W), active(V'),V # W, vertex(V'),
viabel’(W,V,S), sign(S), not infl’(W,V,S) .

This subprogram is similar to the consistency check encoded via the rules in (2-5).
However, sign consistency constraints are here only checked for active vertices, and
they must be satisfiable for all but one arbitrary active vertex . Since W ranges over
all vertices of the given influence graph, each active vertex is taken into consideration.

3 In the language of Iparse [13], op(U,V) : edge(U,V) is used to refer to all ground atoms
op(j,i) for which edge(j,i) holds, with the respective ground atoms connected by .



Benchmarks We assess the scalability of this approach within the setting given in
the previous section. There again, we distinguish between grounding time and solving
time. The results are presented in Fig. 3 (note that X and Y axis are in log-scale). For
grounding, we found a nearly perfect linear relationship (in log scale) between the size
of the instance and the grounding time, and the slope of the line is 2. In other words, the
grounding stage is here in O(n?), which is absolutely consistent with the fact that our
encoding for finding MIC grows also quadratically with the number of vertices (see for
instance the predicate viabel’).

Concerning the solving time, we also obtain linear relationships, in the following
sense. For each size, the 50 instances are distributed into two groups. Most of them
are easily solvable, that is in less than a minute. However, a couple of instances are
strikingly more difficult, and may be between 100 and 1000 times longer to solve.
Nevertheless, we observe that the time needed to solve the easiest (resp., the hardest)
instances grows linearly (in log-scale) with the size of the instances. This time, the slope
of the line is slightly greater than 2, that is 2.3 and 3.2 for the easiest and the hardest
instances respectively. Unfortunately, we could not characterize the hardest instances
further.

Grounding time for the diagnosis problem Salving time for the diagnosis problem
100 . 10000

Time (in seconds, log-scale)

-
Time (in seconds, log-soale)
e
-
-
-

10 100 1000 10 100 1000
Number of vertices in the interaction graph Number of vertices in the interaction graph

Fig. 3. Execution time for finding one MIC in an inconsistent instance. The execution time is
separated into its two contributions, namely grounding (on the left hand) and actual solving (on
the right hand). Note that on both cases, X and Y-axis are in log-scale.

These results suggest that finding a MIC in an inconsistent instance is computa-
tionally harder than checking consistency. This would not be surprising as extracting
MUC:s from unsatisfiable set of clauses is provably complete for the second level of the
polynomial hierarchy [23]. However it should be noted that our instances are most often
very easily solved, and it is still an open question whether instances coming real data
fall into this category.

6 Discussion

We have provided an approach based on ASP to check the consistency between experi-
mental profiles and influence graphs. In case of inconsistency, the concept of a MIC can
be exploited for identifying concise explanations, pointing to unreliable data or missing



reactions. Such MICs can also be determined by means of ASP, and we have provided
an encoding for this purpose. The problem of finding MICs is closely related to the
extraction of MUC:s in the context of SAT. From a knowledge representation point of
view, we however argue for our technique based on ASP, as it allows for an elegant way
to describe problems in terms of a uniform encoding and specific instances.

By now, a variety of efficient ASP tools are available, both for grounding and for
solving logic programs. An empirical assessment of them (on random as well as real
data), along with a comparison to existent methods not based on ASP, is defered to
an extended version of this paper. If the ASP approach computationally scales well,
its elegance and flexibility in problem modeling might make it attractive for biological
questions beyond the ones addressed here. It will also be interesting to investigate how
far the performance of ASP tools can be tuned by varying and optimizing encodings.
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Abstract. Haplotype Inference is a challenging problem in bioinformat-
ics that consists in inferring the basic genetic constitution of diploid
organisms on the basis of their genotype. This information allows re-
searchers to perform association studies for the genetic variants involved
in diseases and the individual responses to therapeutic agents.

A notable approach to the problem is to encode it as a combinatorial
problem (under certain hypotheses, such as the pure parsimony crite-
rion) and to solve it using off-the-shelf combinatorial optimization tech-
niques. The main methods applied to Haplotype Inference are either
simple greedy heuristic or exact methods that, at present, are adequate
only for moderate size instances.

In this paper, we present an approach based on the combination of local
search metaheuristics and a reduction procedure based on an analysis of
the problem structure. Results on a set of Haplotype Inference bench-
marks show that this approach achieves a good trade-off between solution
quality and execution time.

1 Introduction

A fundamental tool of analysis to investigate the genetic variations in a popu-
lation is based on haplotype data. A haplotype is a copy of a chromosome of a
diploid organism (i.e., an organism that has two copies of each chromosome, one
inherited from the father and one from the mother).

The collection of haplotypes from the genetic material is not an easy task: in
fact, due to technological limitations it is currently infeasible to directly collect
haplotypes in an experimental way, but rather it is possible to collect genotypes,
i.e., the conflation of a pair of haplotypes. Therefore, haplotypes have to be
inferred from genotypes in order to reconstruct the detailed information and
trace the precise structure of human populations. This process is called Haplotype
Inference and the goal is to find a set of haplotype pairs so that all the genotypes
are resolved.

Current approaches for solving the problem include simple greedy heuris-
tics [1] and exact methods such as Integer Linear Programming [2,3], Semidef-
inite Programming [4,5], SAT models [6] and Pseudo-Boolean Optimization al-
gorithms [7]. These approaches, however, at present seem not to be particularly



adequate for very-large size instances. Conversely, we believe that metaheuristic
(and hybrid) approaches could provide better scalability than exact algorithms.
To the best of our knowledge, the only attempt to employ metaheuristic tech-
niques for the problem is a recently proposed Genetic Algorithm [8]. However,
the cited paper does not report results on real size instances.

In this work we present a metaheuristic approach to tackle the Haplotype
Inference problem by pure parsimony. We introduce the problem in Section 2
and we sketch an analysis of the problem structure. The outcome of the analysis
is a reduction procedure that can be combined with the metaheuristic approach
developed in Section 3 in order to improve the performance of local search.
Experimental results concerning a comparison of our technique against the state-
of-the-art for Haplotype Inference by parsimony are discusses in Section 4.

2 The Haplotype Inference problem

In the Haplotype Inference problem we deal with genotypes, that is, strings of
length m that corresponds to a chromosome with m sites. Each value in the
string belongs to the alphabet {0,1,2}. A position in the genotype is associated
with a site of interest on the chromosome (called a SNP: single nucleotide poly-
morphism) and it has value 0 (wild type) or 1 (mutant) if the corresponding
chromosome site is a homozygous site (i.e., it has that state on both copies)
or the value 2 if the chromosome site is heterozygous. A haplotype is a string
of length m that corresponds to only one copy of the chromosome (in diploid
organisms) and whose positions can assume the symbols 0 or 1 according to the
following rules:

glil = 0= hlj] = 0AK[j] =0 (1)
glil =1 = hljl =1Ak[j] =1 (2)
glil =2 = (hljl = OAK[j] = 1) V (h[j] = 1 AK[j] = 0) (3)

We say that h is a resolvent of g, and we write h < g, if there exists a
companion haplotype k such that (h, k) > ¢. This notation can be extend to sets
of haplotypes, and we write H = {hy,...,h} < g, meaning that h; < g for all
1=1,...,1, or to sets of genotypes, in this case we write h < A if h < g for all
ge A

Conditions (1) and (2) require that both haplotypes must have the same
value in all homozygous sites, while condition (3) states that in heterozygous
sites the haplotypes must have different values.

Observe that, according to the definition, for a single genotype string the
haplotype values at a given site are predetermined in the case of homozygous
sites, whereas there is a freedom to choose between two possibilities at heterozy-
gous places. This means that for a genotype string with [ heterozygous sites
there are 2!=1 possible pairs of haplotypes that resolve it.

As an example, consider the genotype g = (0212), then the possible pairs of
haplotypes that resolve it are ((0110), (0011)) and ((0010), (0111)).



The Haplotype Inference problem under the pure parsimony hypothesis is
the problem of finding a set R of n pairs of (not necessarily distinct) haplotypes
R = {(h1,k1),...,{hn,kn)}, so that (h;, k;)>g;,i =1,...,n. We call H the set
of haplotypes used in the construction of R, i.e., H = {hy,...,hp,k1,... kn}
and our goal is to minimize the cardinality of H. It has been shown that this
problem is APX-hard [9] and therefore NP-hard.

It is possible to define a graph that expresses the compatibility between geno-
types, so as to avoid unnecessary checks in the determination of the resolvents.
Let us build the graph G = (G, E), in which the set of vertices coincides with the
set of the genotypes; in the graph, a pair of genotypes g1, g2 are connected by
an edge if they are compatible, i.e., one or more common haplotypes can resolve
both of them. The same concept can be expressed also between a genotype and
a haplotype.

On the basis of the compatibility graph it is possible to devise a reduction
procedure whose goal is to try to decrease the number of distinct haplotypes
while satisfying the resolution constraint. The intuition behind the procedure is
that a possible way of reducing the haplotype number is to resolve a genotype
by a haplotype that is compatible, but not currently resolving it. A step of the
reduction procedure is described by the following proposition.

Proposition 1 (Haplotype local reduction). Given n genotypes G = {g1,
...y gn} and the resolvent set R = {{h1,k1),...,{hn,kn)}, so that (h;, k;) > g;.
Suppose there exist two genotypes g,9’" € G such that g<(h, k), g’ <(h', k'), h is
compatible also with ¢ and h # 1, h # k', i’ 1A, k' < B.

The replacement of (', k") with (h, g’ © h)? in the resolution of g’ is a correct
resolution that employs a number of distinct haplotypes according to the following
criteria:

— if |A] = 1 and |B| = 1, the new resolution uses at most one less distinct
haplotype;

— if |[A] > 1 and |B| = 1 (or symmetrically, |A] = 1 and |B| > 1), the new
resolution uses at most the same number of distinct haplotypes;

— in the remaining case the new resolution uses at most one more distinct
haplotype.

Proof. The proof of the proposition is straightforward. The resolution is obvi-
ously correct because h is compatible with ¢’ and ¢’ © h is the complement of A
with respect to ¢’.

Concerning the validity of the conditions on the cardinality, let us proceed
by cases and first consider the situation in which ¢’ & h does not resolve any
other genotype but ¢.

If |A] = |B| = 1, then ' and k' are not shared with other genotype resolutions
so they will not appear in the set H after the replacement, therefore since in the
new resolution & is shared between g and ¢’ the cardinality of H is decreased by
one.

3 With ¢’©h we denote the complementary haplotype of h w.r.t. g. It is straightforward
to prove that such a haplotype exists and is unique.



Conversely, if one of the sets |A| or |B| consists of more than a genotype
and the other set of just one genotype, there is no guarantee of obtaining an
improvement from the replacement. Indeed, since one of the two haplotypes is
already shared with another genotype there is just a replacement of the shared
haplotype with another one in the set H.

Finally, when |A4] > 1 and |B| > 1 both A’ and £’ are shared with other
genotypes therefore the replacement introduces the new haplotype ¢’ © h in the
set H.

Moving to the situation in which ¢’ © h resolves also other genotypes, the
same considerations apply; additionally, given that ¢’ © h is already present in
H, the number of distinct haplotypes employed in the resolution is decreased by
one. For this reason the estimation of the changes of |H| is conservative. ad

Even though in principle the reduction procedure can be employed with any
selective solution method (such as Local Search or Genetic Algorithms), in this
paper we decided to focus on a tabu search algorithm which seemed to be very
promising.

3 Local Search techniques for Haplotype Inference

As the search space for this problem we adopt a complete representation of
the genotype resolution. That is, we consider, for each genotype g, the pair of
haplotypes (h, k) that resolves it. In this representation all the genotypes are fully
resolved at each state by construction. The search space is therefore the collection
of sets R defined as in the problem statement. The complete representation has
the advantage of allowing to design anytime algorithms, since the search can be
interrupted any moment and return a feasible solution, i.e., a set (not necessarily
minimal) of haplotypes that resolve the given genotypes.

For the cost function, we identify different components related either to op-
timality or to heuristic measures. A natural component is the objective function
of the original problem, that is the cardinality |H| of the set of haplotypes em-
ployed in the resolution. Moreover, we also include some heuristic related to the
potential quality of the solution, namely the number of incompatible sites be-
tween each genotype/haplotype pair. The cost function F' is then the weighted
sum of the two components.

We designed a family of local search strategies, namely Best improvement,
Stochastic first improvement, Simulated annealing, and Tabu search. The tech-
niques are instances of the general strategies described in [10]. All of them start
with a set of haplotypes of cardinality 2n, where n is the number of genotypes,
and they explore the search space by iteratively modifying pairs of resolving
haplotypes trying to reduce the number of distinct ones. Best improvement and
Stochastic first improvement traverse the search space by moving from a state to
a neighboring one with a lower cost function value, by choosing the best and first
neighbor respectively. Simulated annealing moves also to worse states than the
current one, on the basis of a probabilistic choice function. Finally, Tabu search



behaves in principle like Best improvement but restricts the neighborhood by
forbidding recently performed moves.

Local search moves are defined upon a Hamming neighborhood function. A
good trade-off between exploration and execution time is the 1-Hamming dis-
tance neighborhood w.r.t. each haplotype in the current solution. This kind of
move can be thought as a flip, performed at a given position in a pair of hap-
lotypes resolving a given genotype. The complete exploration of such a neigh-
borhood has a time complexity bounded from above by O(nk), where k is the
number of haplotypes and n the number of sites per haplotype. In practice, the
time complexity can be further reduced by restricting the number of neighbors
to heterozygous sites and haplotypes resolving non isolated genotypes.

4 Experimental results

We developed a set of local search solvers (Tabu Search, Hill Climbing and Sim-
ulated Annealing) using EASYLOCAL++ [11], a framework for the development
of local search algorithms. The algorithms have been implemented in C++ and
compiled with gce 3.2.2 and run on a Intel Xeon CPU 2.80GHz machine with
SUSE Linux 2.4.21-278-smp. Each algorithm was run on every instance one time
and we allotted 300 seconds for each execution of the algorithms. Since Tabu
search (TS) showed superior performance over the other local search algorithms,
we only discuss results of this technique.

Our Tabu search implementation considers as tabu all the moves that insist
on a pair of haplotypes that recently changed. The tabu list scheme adopted
is a dynamic one, that is for each move performed we consider it as prohibited
for a number of iterations that randomly varies between two values k,,;, and
kmaz- The values of these parameters were chosen according to the results of an
exploratory analysis based on the F-Race method [12], and were set to ki =
10, kpaz = 20. These settings have shown to be quite robust across the variety
of instances tested. Moreover, since the algorithm that incorporates the initial
graph reduction sharply outperforms the one without graph reduction, we report
only the results of the former one.

The benchmark instances are composed of two parts. The first one, composed
of the sets Harrower uniform, Harrower non-uniform and Harrower hapmap, is
the benchmark used in [3]. The second part of the instances, namely Marchini
SU1, Marchini SU2, Marchini SU3 and Marchini SU-100kb, were taken from the
website http://www.stats.ox.ac.uk/~marchini/phaseoff.html.

The main characteristics of the instance sets are summarized in Table 1.

In order to estimate the quality of solutions produced by TS, we need to
compute the optimal solution of the benchmark instances. We tackled the in-
stances with rpoly [7], a state-of-the-art exact solver for the Haplotype Inference.
The solver is run on the same benchmark instances and on the same machine.
We allotted rpoly 24 hours of computation for each instance. The instances of
the set Harrower uniform, Harrower non-uniform, Harrower hapmap, Marchini
SU1 and Marchini SU2 were completely solved. From Marchini SU3 and Mar-



Table 1: A summary of the main characteristics of the benchmarks.

Benchmark set N. of instances|N. of genotypes|IN. of sites
Harrower uniform 200 10+100 30-+-50
Harrower non-uniform 90 10+100 3050
Harrower hapmap 24 568 3075
Marchini SU1 100 90 179
Marchini SU2 100 90 171
Marchini SU3 100 90 187
Marchini SU-100kb 29 90 18

Table 2: Fraction of instances solved by rpoly from each benchmark.

Benchmark set Fraction of Benchmark set Fraction of
solved instances solved instances
Harrower uniform 200/200 Marchini SU1 100/100
Harrower non-uniform 90/90 Marchini SU2 100/100
Harrower hapmap 24/24 Marchini SU3 89/100

Marchini SU-100kb 23/29

chini SU-100kb only a portion of the instances were solved. Overall, most of the
instances could be solved with a runtime higher than 12 hours per instance. A
summary of the fraction of solved instances is reported in Table 2.

The plots in Figure 1 report the comparison between the TS and rpoly; a
point (z,y) in the plot represents the number of haplotypes in the best solution
returned by TS and rpoly, respectively. A point below the line means that the
solution returned by the algorithm corresponding to the y-axis is better than
the one returned by the algorithm associated to the x-axis.

Notice that the solution quality achieved by TS approximates the optimal
one returned by rpoly on some benchmarks, namely Harrower sets and Marchini
SU-100kb, whilst the performance on Marchini SU2 is considerably inferior. The
performance on benchmarks Marchini SU1 and Marchini SU3 is inferior, but
it has to be taken into account that TS returned a feasible solution to all the
instances of the sets, whilst rpoly solved only a fraction of the instances of
Marchini SU3. We also observe that our approach scales very smoothly.

These results enlighten the complementarity of the two approaches: the al-
gorithm that also returns the proof of optimality is definitely preferable over the
incomplete one when the execution time allotted can be large, while we can re-
sort to the approximate algorithm to have a feasible and (hopefully) near-optimal
solution in very short time.
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